IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v165y2018icp180-193.html
   My bibliography  Save this article

Fisher dispersion index for multivariate count distributions: A review and a new proposal

Author

Listed:
  • Kokonendji, Célestin C.
  • Puig, Pedro

Abstract

The Fisher dispersion index is very widely used to measure the departure of any univariate count distribution from the equidispersed Poisson model. A multivariate extension has not yet been well defined and discussed in the literature. In this paper, a new definition of the multivariate Fisher index through the generalized dispersion index is proposed. This is a scalar quantity, defined as a ratio of two quadratic forms of the mean vector and the covariance matrix. A multiple marginal dispersion index and its relative extension for a given reference count distribution are discussed, and the asymptotic behavior and other properties are studied. Illustrative examples and practical applications on count datasets are analyzed under several scenarios. Some concluding remarks are made, including challenging problems.

Suggested Citation

  • Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
  • Handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:180-193
    DOI: 10.1016/j.jmva.2017.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17303834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bent Jørgensen & Célestin Kokonendji, 2016. "Discrete dispersion models and their Tweedie asymptotics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(1), pages 43-78, January.
    2. Ferrari, A. & Letac, G. & Tourneret, J.-Y., 2007. "Exponential families of mixed Poisson distributions," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1283-1292, July.
    3. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    4. Aamir Saghir & Zhengyan Lin, 2014. "Control chart for monitoring multivariate COM-Poisson attributes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 200-214, January.
    5. Pedro Puig & Célestin C. Kokonendji, 2018. "Non†parametric Estimation of the Number of Zeros in Truncated Count Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 347-365, June.
    6. Iliopoulos, George, 2008. "UMVU estimation of the ratio of powers of normal generalized variances under correlation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1051-1069, July.
    7. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
    8. Minkova, Leda D. & Balakrishnan, N., 2014. "Type II bivariate Pólya–Aeppli distribution," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 40-49.
    9. W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.
    10. Peter Berkhout & Erik Plug, 2004. "A bivariate Poisson count data model using conditional probabilities," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 349-364, August.
    11. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    12. Wagner Hugo Bonat & Bent Jørgensen, 2016. "Multivariate covariance generalized linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 649-675, November.
    13. Aerts, S. & Haesbroeck, G. & Ruwet, C., 2015. "Multivariate coefficients of variation: Comparison and influence functions," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 183-198.
    14. Johann Cuenin & Bent Jørgensen & Célestin C. Kokonendji, 2016. "Simulations of full multivariate Tweedie with flexible dependence structure," Computational Statistics, Springer, vol. 31(4), pages 1477-1492, December.
    15. Pfeifer, Dietmar & Nešlehová, Johana, 2004. "Modeling and Generating Dependent Risk Processes for IRM and DFA," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 333-360, November.
    16. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    2. Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2020. "Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 33-58, March.
    3. Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2021. "On Poisson-exponential-Tweedie models for ultra-overdispersed count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 1-23, March.
    4. Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.
    5. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    6. Marcelo Bourguignon & Célestin C. Kokonendji, 2024. "Coherent indexes for shifted count and semicontinuous models," Statistical Papers, Springer, vol. 65(8), pages 5253-5271, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Bourguignon & Célestin C. Kokonendji, 2024. "Coherent indexes for shifted count and semicontinuous models," Statistical Papers, Springer, vol. 65(8), pages 5253-5271, October.
    2. Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.
    3. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    4. W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.
    5. Maria Victoria Ibañez & Marina Martínez-Garcia & Amelia Simó, 2021. "A Review of Spatiotemporal Models for Count Data in R Packages. A Case Study of COVID-19 Data," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
    6. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    7. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    8. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    9. Soltani, Ali & Roohani Qadikolaei, Mohsen, 2024. "Space-time analysis of accident frequency and the role of built environment in mitigation," Transport Policy, Elsevier, vol. 150(C), pages 189-205.
    10. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    11. Ali Jafari, 2012. "Inferences on the ratio of two generalized variances: independent and correlated cases," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 297-314, August.
    12. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    13. Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
    14. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    15. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    16. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    18. Hu, Songhua & Xiong, Chenfeng & Ji, Ya & Wu, Xin & Liu, Kailun & Schonfeld, Paul, 2024. "Understanding factors influencing user engagement in incentive-based travel demand management program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    19. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    20. Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:180-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.