IDEAS home Printed from https://ideas.repec.org/p/ira/wpaper/201718.html
   My bibliography  Save this paper

“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”

Author

Listed:
  • Catalina Bolancé

    (Research group–IREA. Av. Diagonal 696; 08034 Barcelona ,Spain.)

  • Raluca Vernic

    (Faculty of Mathematics and Informatics Ovidius University of Constanta; Bd Mamaia 124, 900527 Constanta, Romania.)

Abstract

Starting from the question: “What is the accident risk of an insured?”, this paper considers a multivariate approach by taking into account three types of accident risks and the possible dependence between them. Driven by a real data set, we propose three trivariate Sarmanov distributions with generalized linear models (GLMs) for marginals and incorporate various individual characteristics of the policyholders by means of explanatory variables. Since the data set was collected over a longer time period (10 years), we also added each individual’s exposure to risk. To estimate the parameters of the three Sarmanov distributions, we analyze a pseudo-maximumlikelihood method. Finally, the three models are compared numerically with the simpler trivariate Negative Binomial GLM.

Suggested Citation

  • Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
  • Handle: RePEc:ira:wpaper:201718
    as

    Download full text from publisher

    File URL: http://www.ub.edu/irea/working_papers/2017/201718.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    2. Guelman, Leo & Guillén, Montserrat & Pérez-Marín, Ana M., 2014. "A survey of personalized treatment models for pricing strategies in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 68-76.
    3. Boucher, Jean-Philippe & Inoussa, Rofick, 2014. "A Posteriori Ratemaking With Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 587-612, September.
    4. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    5. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    6. Patrick L. Brockett & Linda L. Golden & Montserrat Guillen & Jens Perch Nielsen & Jan Parner & Ana Maria Perez‐Marin, 2008. "Survival Analysis of a Household Portfolio of Insurance Policies: How Much Time Do You Have to Stop Total Customer Defection?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 713-737, September.
    7. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    8. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    9. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolancé, Catalina & Vernic, Raluca, 2019. "Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 89-103.
    2. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    4. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    5. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    6. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    7. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
    8. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    10. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    11. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    12. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    13. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    14. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    15. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    16. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    17. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    18. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    19. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    20. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.

    More about this item

    Keywords

    Multivariate counting distribution; Sarmanov distribution; Negative Binomial distribution; Generalized Linear Model; ML estimation algorithm. JEL classification: C51; G22.;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ira:wpaper:201718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alicia García (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.