IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v614y2023ics0378437123000894.html
   My bibliography  Save this article

Hierarchical generalized linear models, correlation and a posteriori ratemaking

Author

Listed:
  • Gning, Lucien
  • Diagne, M.L.
  • Tchuenche, J.M.

Abstract

Insurance pricing is the premium set by the insurance companies. Hierarchical generalized linear models (HGLM) particularly those dealing with count data and their application to insurance pricing are investigated. In the context of car insurance a posteriori ratemaking, the Poisson-gamma HGLM and the negative binomial-beta HGLM are compared. It is shown that contrary to the HGLM Poisson-gamma, the negative binomial-beta HGLM fits the correlation between successive claim numbers of a given insured, which generates a significant difference of the resulting a posteriori premiums. Simulations and an application based on a real portfolio of car insurance are carried out to support the theoretical results.

Suggested Citation

  • Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
  • Handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123000894
    DOI: 10.1016/j.physa.2023.128534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123000894
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    2. Boucher, Jean-Philippe & Inoussa, Rofick, 2014. "A Posteriori Ratemaking With Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 587-612, September.
    3. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    4. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    5. Molas, Marek & Lesaffre, Emmanuel, 2011. "Hierarchical Generalized Linear Models: The R Package HGLMMM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i13).
    6. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    7. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    8. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    9. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
    2. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    3. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    4. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    5. Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
    6. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    7. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    8. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
    9. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    10. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    11. Angers, Jean-François & Desjardins, Denise & Dionne, Georges, 2004. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 253-303, Juin-Sept.
    12. Georges Dionne & Olfa Ghali, 2005. "The (1992) Bonus‐Malus System in Tunisia: An Empirical Evaluation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 609-633, December.
    13. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    14. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    15. Georges Dionne & Benoit Dostie, 2007. "Estimating the Effect of a Change in Insurance Pricing Regime on Accidents with Endogenous Mobility," Cahiers de recherche 0728, CIRPEE.
    16. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    17. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2018. "Modelling And Estimating Individual And Firm Effects With Count Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1049-1078, September.
    18. Jean Pinquet, 2012. "Experience rating in non-life insurance," Working Papers hal-00677100, HAL.
    19. Desjardins, Denise & Dionne, Georges & Pinquet, Jean, 2001. "Experience Rating Schemes for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 81-105, May.
    20. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123000894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.