IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i4d10.1007_s11749-019-00628-8.html
   My bibliography  Save this article

On the convenience of heteroscedasticity in highly multivariate disease mapping

Author

Listed:
  • F. Corpas-Burgos

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)
    CIBER de Epidemiología y Salud Pública)

  • P. Botella-Rocamora

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)
    Subdirección de Epidemiología, Vigilancia de la Salud y Sanidad Ambiental, Conselleria de Sanitat Universal i Salut Pública)

  • M. A. Martinez-Beneito

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)
    CIBER de Epidemiología y Salud Pública)

Abstract

Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptivity problem in multivariate disease mapping studies and give some theoretical insights on their interpretation.

Suggested Citation

  • F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00628-8
    DOI: 10.1007/s11749-019-00628-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00628-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00628-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel A. Martinez-Beneito, 2013. "A general modelling framework for multivariate disease mapping," Biometrika, Biometrika Trust, vol. 100(3), pages 539-553.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    6. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Martinez-Beneito & Carlos Vergara-Hernández & Paloma Botella-Rocamora & Francisca Corpas-Burgos & Jordi Pérez-Panadés & Óscar Zurriaga & Elena Aldasoro & Carme Borrell & Elena Cabeza & Lluís, 2021. "Geographical Variability in Mortality in Urban Areas: A Joint Analysis of 16 Causes of Death," IJERPH, MDPI, vol. 18(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    3. Sudipto Banerjee, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2798-2801, December.
    4. Marcos O. Prates & Douglas R. M. Azevedo & Ying C. MacNab & Michael R. Willig, 2022. "Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1116-1136, November.
    5. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    6. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    7. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    8. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    9. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    10. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    11. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    12. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    13. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    14. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    15. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    16. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    17. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Samson B. Adebayo, 2004. "Bayesian geoadditive modelling of breastfeeding initiation in Nigeria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 267-281.
    19. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    20. Haiyue Liu & Chuanyun Fu & Chaozhe Jiang & Yue Zhou & Chengyuan Mao & Jining Zhang, 2020. "Bayesian hierarchical spatial count modeling of taxi speeding events based on GPS trajectory data," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00628-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.