IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/117197.html
   My bibliography  Save this paper

The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters

Author

Listed:
  • Tzougas, George
  • Makariou, Despoina

Abstract

We introduce a multivariate Poisson-Generalized Inverse Gaussian regression model with varying dispersion and shape for modeling different types of claims and their associated counts in nonlife insurance. The multivariate Poisson-Generalized Inverse Gaussian regression model is a general class of models which, under the approach adopted herein, allows us to account for overdispersion and positive correlation between the claim count responses in a flexible manner. For expository purposes, we consider the bivariate Poisson-Generalized Inverse Gaussian with regression structures on the mean, dispersion, and shape parameters. The model's implementation is demonstrated by using bodily injury and property damage claim count data from a European motor insurer. The parameters of the model are estimated via the Expectation-Maximization algorithm which is computationally tractable and is shown to have a satisfactory performance.

Suggested Citation

  • Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:117197
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/117197/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, October.
    2. Pechon, Florian & Trufin, Julien & Denuit, Michel, 2018. "Multivariate modelling of household claim frequencies in motor third-party liability insurance," LIDAM Reprints ISBA 2018035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    4. Catalina Bolancé & Montserrat Guillen & Albert Pitarque, 2020. "A Sarmanov Distribution with Beta Marginals: An Application to Motor Insurance Pricing," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    5. Pechon, Florian & Trufin, Julien & Denuit, Michel, 2018. "Multivariate Modelling Of Household Claim Frequencies In Motor Third-Party Liability Insurance," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 969-993, September.
    6. Jung, Robert C & Winkelmann, Rainer, 1993. "Two Aspects of Labor Mobility: A Bivariate Poisson Regression Approach," Empirical Economics, Springer, vol. 18(3), pages 543-556.
    7. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2021. "Home and Motor insurance joined at a household level using multivariate credibility," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 82-114, March.
    8. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    9. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," LIDAM Reprints ISBA 2019039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 566-584, December.
    11. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    12. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    13. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    14. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    15. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Multivariate modelling of multiple guarantees in motor insurance of a household," LIDAM Reprints ISBA 2019031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    17. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, February.
    18. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    19. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    20. Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
    21. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 378-399, September.
    22. Krummenauer, Frank, 1998. "Representation of multivariate discrete distributions by probability generating functions," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 327-331, August.
    23. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2021. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Reprints ISBA 2021007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    24. Gurmu, Shiferaw & Elder, John, 2000. "Generalized bivariate count data regression models," Economics Letters, Elsevier, vol. 68(1), pages 31-36, July.
    25. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    26. Felix Famoye, 2010. "On the bivariate negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 969-981.
    27. Anas Abdallah & Jean-Philippe Boucher & Hélène Cossette & Julien Trufin, 2016. "Sarmanov Family of Bivariate Distributions for Multivariate Loss Reserving Analysis," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(2), pages 184-200, April.
    28. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 566-584, December.
    29. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    30. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    31. Fung, Tsz Chai & Badescu, Andrei L. & Lin, X. Sheldon, 2019. "A class of mixture of experts models for general insurance: Theoretical developments," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 111-127.
    32. Chai Fung, Tsz & Badescu, Andrei L. & Sheldon Lin, X., 2019. "A Class Of Mixture Of Experts Models For General Insurance: Application To Correlated Claim Frequencies," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 647-688, September.
    33. S. Kocherlakota, 1988. "On the compounded bivariate Poisson distribution: A unified treatment," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(1), pages 61-76, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    2. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    3. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    4. Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
    5. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    6. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    7. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    8. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    9. Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
    10. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    12. Eugenio Miravete, 2014. "Testing for complementarities among countable strategies," Empirical Economics, Springer, vol. 46(4), pages 1521-1544, June.
    13. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    15. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    16. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    18. Atella, Vincenzo & Deb, Partha, 2008. "Are primary care physicians, public and private sector specialists substitutes or complements? Evidence from a simultaneous equations model for count data," Journal of Health Economics, Elsevier, vol. 27(3), pages 770-785, May.
    19. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    20. Mauro Laudicella & Paolo Li Donni, 2022. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.