IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i1d10.1007_s10584-019-02430-9.html
   My bibliography  Save this article

Towards a comprehensive characterization of evidence in synthesis assessments: the climate change impacts on the Brazilian water resources

Author

Listed:
  • Pablo Borges de Amorim

    (Federal University of Santa Catarina)

  • Pedro B. Chaffe

    (Federal University of Santa Catarina)

Abstract

The Intergovernmental Panel on Climate Change (IPCC) has put a lot of efforts to describe uncertainties and to judge the confidence level of its major conclusions. Despite a guidance to communicate uncertainty, the assignment of confidence is not sufficiently clear and, thus, hard to be reproduced by the extern community. By conducting a synthesis assessment about the impacts of climate change on the Brazilian water resources, we identified an opportunity to illustrate the characterization of evidence as adopted in IPCC reports. We propose a method to describe the evidence from model outputs wherein the quality and amount of studies, as well as the consistency among their conclusions, are subject of a transparent rating procedure. In summary, the more comprehensive the study in sampling uncertainties, the higher its quality. Likewise, the amount and consistency among conclusions is assigned in a systematic way. The method is applied for synthesizing a collection of 42 peer-reviewed articles. It reveals important aspects about the evidence of the potential impacts of climate change in the Brazilian water resources, such as changes into a drier hydrological regime. However, the use of multi-model ensemble, the evaluation of models, and the observational data is limited. The proposed method enables consistent communication of the degree of evidence in a transparent, traceable, and comprehensive fashion. The method can be used as a tool to support experts on their judgment. The approach is reproducible and can guide synthesis work not only in Brazil but anywhere else.

Suggested Citation

  • Pablo Borges de Amorim & Pedro B. Chaffe, 2019. "Towards a comprehensive characterization of evidence in synthesis assessments: the climate change impacts on the Brazilian water resources," Climatic Change, Springer, vol. 155(1), pages 37-57, July.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02430-9
    DOI: 10.1007/s10584-019-02430-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02430-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02430-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Bravo & Walter Collischonn & Adriano Paz & Daniel Allasia & Federico Domecq, 2014. "Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin," Climatic Change, Springer, vol. 127(1), pages 27-41, November.
    2. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
    3. Gary Yohe & Michael Oppenheimer, 2011. "Evaluation, characterization, and communication of uncertainty by the intergovernmental panel on climate change—an introductory essay," Climatic Change, Springer, vol. 108(4), pages 629-639, October.
    4. Roger Torres & David Lapola & Jose Marengo & Magda Lombardo, 2012. "Socio-climatic hotspots in Brazil," Climatic Change, Springer, vol. 115(3), pages 597-609, December.
    5. Michael Oppenheimer & Christopher M. Little & Roger M. Cooke, 2016. "Expert judgement and uncertainty quantification for climate change," Nature Climate Change, Nature, vol. 6(5), pages 445-451, May.
    6. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    7. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    8. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    9. Michael Mastrandrea & Katharine Mach & Gian-Kasper Plattner & Ottmar Edenhofer & Thomas Stocker & Christopher Field & Kristie Ebi & Patrick Matschoss, 2011. "The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups," Climatic Change, Springer, vol. 108(4), pages 675-691, October.
    10. S. Eisner & M. Flörke & A. Chamorro & P. Daggupati & C. Donnelly & J. Huang & Y. Hundecha & H. Koch & A. Kalugin & I. Krylenko & V. Mishra & M. Piniewski & L. Samaniego & O. Seidou & M. Wallner & V. K, 2017. "An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins," Climatic Change, Springer, vol. 141(3), pages 401-417, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casey Helgeson & Richard Bradley & Brian Hill, 2018. "Combining probability with qualitative degree-of-certainty metrics in assessment," Climatic Change, Springer, vol. 149(3), pages 517-525, August.
    2. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.
    3. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    4. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Rosemarie McMahon & Michael Stauffacher & Reto Knutti, 2015. "The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph," Climatic Change, Springer, vol. 133(2), pages 141-154, November.
    6. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    7. A. Kause & W. Bruine de Bruin & J. Persson & H. Thorén & L. Olsson & A. Wallin & S. Dessai & N. Vareman, 2022. "Confidence levels and likelihood terms in IPCC reports: a survey of experts from different scientific disciplines," Climatic Change, Springer, vol. 173(1), pages 1-18, July.
    8. Dongmei Feng & Edward Beighley & Roozbeh Raoufi & John Melack & Yuanhao Zhao & Sam Iacobellis & Daniel Cayan, 2019. "Propagation of future climate conditions into hydrologic response from coastal southern California watersheds," Climatic Change, Springer, vol. 153(1), pages 199-218, March.
    9. D. Carvalho & S. C. Pereira & R. Silva & A. Rocha, 2022. "Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios," Climatic Change, Springer, vol. 174(3), pages 1-24, October.
    10. J. Refsgaard & K. Arnbjerg-Nielsen & M. Drews & K. Halsnæs & E. Jeppesen & H. Madsen & A. Markandya & J. Olesen & J. Porter & J. Christensen, 2013. "The role of uncertainty in climate change adaptation strategies—A Danish water management example," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(3), pages 337-359, March.
    11. Vimal Mishra & Harsh Shah & M. Rocío Rivas López & Anastasia Lobanova & Valentina Krysanova, 2020. "Does comprehensive evaluation of hydrological models influence projected changes of mean and high flows in the Godavari River basin?," Climatic Change, Springer, vol. 163(3), pages 1187-1205, December.
    12. Brian H. MacGillivray, 2019. "Null Hypothesis Testing ≠ Scientific Inference: A Critique of the Shaky Premise at the Heart of the Science and Values Debate, and a Defense of Value‐Neutral Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1520-1532, July.
    13. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    14. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    16. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    17. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    18. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    19. Tomich, Thomas P. & Lidder, Preetmoninder & Coley, Mariah & Gollin, Douglas & Meinzen-Dick, Ruth & Webb, Patrick & Carberry, Peter, 2019. "Food and agricultural innovation pathways for prosperity," Agricultural Systems, Elsevier, vol. 172(C), pages 1-15.
    20. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02430-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.