IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i3p573-588.html
   My bibliography  Save this article

Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)

Author

Listed:
  • Ian Kraucunas
  • Leon Clarke
  • James Dirks
  • John Hathaway
  • Mohamad Hejazi
  • Kathy Hibbard
  • Maoyi Huang
  • Chunlian Jin
  • Michael Kintner-Meyer
  • Kerstin Dam
  • Ruby Leung
  • Hong-Yi Li
  • Richard Moss
  • Marty Peterson
  • Jennie Rice
  • Michael Scott
  • Allison Thomson
  • Nathalie Voisin
  • Tristram West

Abstract

The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture and land use, socioeconomics, and energy systems using a flexible coupling approach. Stakeholder decision support needs underpin the application of the platform to regional issues, and an uncertainty characterization process is used to identify robust decisions. The platform can be customized to inform a variety of complex questions, such as how a policy in one sector might affect the ability to meet climate mitigation targets or adaptation goals in another sector. Current numerical experiments focus on the eastern United States, but the framework is designed to be regionally flexible. This paper provides a high-level overview of PRIMA’s functional capabilities and describes some key challenges and opportunities associated with integrated regional modeling. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ian Kraucunas & Leon Clarke & James Dirks & John Hathaway & Mohamad Hejazi & Kathy Hibbard & Maoyi Huang & Chunlian Jin & Michael Kintner-Meyer & Kerstin Dam & Ruby Leung & Hong-Yi Li & Richard Moss &, 2015. "Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)," Climatic Change, Springer, vol. 129(3), pages 573-588, April.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:3:p:573-588
    DOI: 10.1007/s10584-014-1064-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1064-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1064-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott, Michael J. & Daly, Don S. & Zhou, Yuyu & Rice, Jennie S. & Patel, Pralit L. & McJeon, Haewon C. & Page Kyle, G. & Kim, Son H. & Eom, Jiyong & Clarke, Leon E., 2014. "Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integr," Energy Economics, Elsevier, vol. 43(C), pages 22-33.
    2. L. Mearns & S. Sain & L. Leung & M. Bukovsky & S. McGinnis & S. Biner & D. Caya & R. Arritt & W. Gutowski & E. Takle & M. Snyder & R. Jones & A. Nunes & S. Tucker & D. Herzmann & L. McDaniel & L. Sloa, 2013. "Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)," Climatic Change, Springer, vol. 120(4), pages 965-975, October.
    3. J. Rice & R. Moss & P. Runci & K. Anderson & E. Malone, 2012. "Incorporating stakeholder decision support needs into an integrated regional Earth system model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(7), pages 805-819, October.
    4. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    5. Kathy Hibbard & Anthony Janetos, 2013. "The regional nature of global challenges: a need and strategy for integrated regional modeling," Climatic Change, Springer, vol. 118(3), pages 565-577, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Wenjing & Liu, Jin, 2021. "Soft skills, hard skills: What matters most? Evidence from job postings," Applied Energy, Elsevier, vol. 300(C).
    2. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    3. Michael J. Scott & Don S. Daly & Mohamad I. Hejazi & G. Page Kyle & Lu Liu & Haewon C. McJeon & Anupriya Mundra & Pralit L. Patel & Jennie S. Rice & Nathalie Voisin, 2016. "Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework," Climatic Change, Springer, vol. 136(2), pages 233-246, May.
    4. Bramer, L.M. & Rounds, J. & Burleyson, C.D. & Fortin, D. & Hathaway, J. & Rice, J. & Kraucunas, I., 2017. "Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days," Applied Energy, Elsevier, vol. 205(C), pages 1408-1418.
    5. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    6. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    7. Schönhart, Martin & Trautvetter, Helene & Parajka, Juraj & Blaschke, Alfred Paul & Hepp, Gerold & Kirchner, Mathias & Mitter, Hermine & Schmid, Erwin & Strenn, Birgit & Zessner, Matthias, 2018. "Modelled impacts of policies and climate change on land use and water quality in Austria," Land Use Policy, Elsevier, vol. 76(C), pages 500-514.
    8. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    9. Turner, B. L. II & Meyfroidt, Patrick & Kuemmerle, Tobias & Müller, Daniel & Chowdhury, Rinku Roy, 2020. "Framing the search for a theory of land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(4), pages 489-508.
    10. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    11. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    13. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    14. Yuan, Mei-Hua & Lo, Shang-Lien, 2022. "Principles of food-energy-water nexus governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    16. Bakker, Craig & Zaitchik, Benjamin F. & Siddiqui, Sauleh & Hobbs, Benjamin F. & Broaddus, Elena & Neff, Roni A. & Haskett, Jonathan & Parker, Cindy L., 2018. "Shocks, seasonality, and disaggregation: Modelling food security through the integration of agricultural, transportation, and economic systems," Agricultural Systems, Elsevier, vol. 164(C), pages 165-184.
    17. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    18. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    19. Dave D. White & J. Leah Jones & Ross Maciejewski & Rimjhim Aggarwal & Giuseppe Mascaro, 2017. "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, MDPI, vol. 9(12), pages 1-21, November.
    20. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    21. Burleyson, Casey D. & Iyer, Gokul & Hejazi, Mohamad & Kim, Sonny & Kyle, Page & Rice, Jennie S. & Smith, Amanda D. & Taylor, Z. Todd & Voisin, Nathalie & Xie, Yulong, 2020. "Future western U.S. building electricity consumption in response to climate and population drivers: A comparative study of the impact of model structure," Energy, Elsevier, vol. 208(C).
    22. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, Michael J. & Daly, Don S. & Hathaway, John E. & Lansing, Carina S. & Liu, Ying & McJeon, Haewon C. & Moss, Richard H. & Patel, Pralit L. & Peterson, Marty J. & Rice, Jennie S. & Zhou, Yuyu, 2015. "Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model," Energy, Elsevier, vol. 90(P2), pages 1682-1694.
    2. Scott, Michael J. & Daly, Don S. & Zhou, Yuyu & Rice, Jennie S. & Patel, Pralit L. & McJeon, Haewon C. & Page Kyle, G. & Kim, Son H. & Eom, Jiyong & Clarke, Leon E., 2014. "Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integr," Energy Economics, Elsevier, vol. 43(C), pages 22-33.
    3. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    4. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    5. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    6. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    7. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    8. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    9. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    11. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    12. repec:zbw:inwedp:542013 is not listed on IDEAS
    13. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    14. Jaglom, Wendy S. & McFarland, James R. & Colley, Michelle F. & Mack, Charlotte B. & Venkatesh, Boddu & Miller, Rawlings L. & Haydel, Juanita & Schultz, Peter A. & Perkins, Bill & Casola, Joseph H. & M, 2014. "Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model®," Energy Policy, Elsevier, vol. 73(C), pages 524-539.
    15. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    16. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.
    17. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    18. Subhra Sekhar Maity & Rajib Maity, 2022. "Changing Pattern of Intensity–Duration–Frequency Relationship of Precipitation due to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5371-5399, November.
    19. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    20. Esther Salazar & Dorit Hammerling & Xia Wang & Bruno Sansó & Andrew O. Finley & Linda O. Mearns, 2016. "Observation-based blended projections from ensembles of regional climate models," Climatic Change, Springer, vol. 138(1), pages 55-69, September.
    21. G. Lacerda & C. Silva & C. Pimenteira & R. Kopp & R. Grumback & L. Rosa & M. Freitas, 2014. "Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: adaptive measures to the impacts by relative sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1041-1062, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:3:p:573-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.