IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics030626192201265x.html
   My bibliography  Save this article

A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty

Author

Listed:
  • Ren, Hourui
  • Liu, Bin
  • Zhang, Zirui
  • Li, Fuxin
  • Pan, Ke
  • Zhou, Zhongli
  • Xu, Xiaoshuang

Abstract

Water scarcity, limited land resources and global warming are the most challenging issues facing sustainable agricultural development, and modern agriculture requires efficient and environmentally friendly agricultural water and land management practices. This paper proposes a water-energy-food-carbon nexus system optimization model, which aims to formulate a scientific and rational water and land resource allocation strategy for sustainable agricultural development to increase irrigation water productivity, reduce carbon emissions and enhance regional agriculture competitiveness. First, the carbon footprint life cycle assessment method was used to measure carbon sinks and carbon emissions across the ecosystem. Second, a multiobjective nonlinear programming model with the goal of maximizing irrigation water productivity, minimizing carbon emissions, and maximizing the competitiveness of low-carbon agriculture is established. Finally, an empirical study is performed in the Yellow River Basin, and an elitist nondominated sorting genetic algorithm is used to solve the model. The research results show that the water-energy-food-carbon nexus system optimization model based on uncertain conditions established in this paper, can maximize resource utilization efficiency and effectively measure the impact of regional agricultural production on the environment. It has reference significance for the realization of carbon neutrality in the region.

Suggested Citation

  • Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201265x
    DOI: 10.1016/j.apenergy.2022.120008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201265X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    2. Lopez-Gunn, E. & Zorrilla, P. & Prieto, F. & Llamas, M.R., 2012. "Lost in translation? Water efficiency in Spanish agriculture," Agricultural Water Management, Elsevier, vol. 108(C), pages 83-95.
    3. Liu, Minghuan & Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2018. "Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 37-52.
    4. Yasar, Abdullah & Rasheed, Rizwan & Tabinda, Amtul Bari & Tahir, Aleena & Sarwar, Friha, 2017. "Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 364-371.
    5. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    6. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    7. Yao, Liming & Li, Yalan & Chen, Xudong, 2021. "A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    9. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    10. Ian Kraucunas & Leon Clarke & James Dirks & John Hathaway & Mohamad Hejazi & Kathy Hibbard & Maoyi Huang & Chunlian Jin & Michael Kintner-Meyer & Kerstin Dam & Ruby Leung & Hong-Yi Li & Richard Moss &, 2015. "Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)," Climatic Change, Springer, vol. 129(3), pages 573-588, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianran Ding & Bernhard Steubing & Wouter Achten, 2022. "Coupling optimization with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359529, ULB -- Universite Libre de Bruxelles.
    2. Biao Zhang & Sang Fu, 2023. "Can Farmers’ Satisfaction with Green Production Policies Be Explained by Policy Structure and Policy Implementation? Evidence from China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    3. Zolghadr-Asli, Babak & McIntyre, Neil & Djordjevic, Slobodan & Farmani, Raziyeh & Pagliero, Liliana, 2023. "The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Tianran Ding & Bernhard Steubing & Wouter Achten, 2022. "Coupling optimization with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352783, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    2. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    3. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    4. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    5. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    6. Li, Jiang & Shang, Songhao & Jiang, Hongzhe & Song, Jian & Rahman, Khalil Ur & Adeloye, Adebayo J., 2021. "Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.
    8. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    11. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    12. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    13. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    14. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    15. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    16. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    17. Zhang, Y.F. & Li, Y.P. & Huang, G.H. & Zhai, X.B. & Ma, Y., 2024. "Improving efficiency and sustainability of water-agriculture-energy nexus in a transboundary river basin under climate change: A double-sided stochastic factional optimization method," Agricultural Water Management, Elsevier, vol. 292(C).
    18. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    19. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    20. Zheng Lu & Yuan He & Shuyan Peng, 2023. "Assessing Integrated Hydrologic Model: From Benchmarking to Case Study in a Typical Arid and Semi-Arid Basin," Land, MDPI, vol. 12(3), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201265x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.