IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v138y2016i1d10.1007_s10584-016-1722-1.html
   My bibliography  Save this article

Observation-based blended projections from ensembles of regional climate models

Author

Listed:
  • Esther Salazar

    (Center for Tobacco Products)

  • Dorit Hammerling

    (National Center for Atmospheric Research)

  • Xia Wang

    (University of Cincinnati)

  • Bruno Sansó

    (University of California)

  • Andrew O. Finley

    (Michigan State University)

  • Linda O. Mearns

    (National Center for Atmospheric Research)

Abstract

We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.

Suggested Citation

  • Esther Salazar & Dorit Hammerling & Xia Wang & Bruno Sansó & Andrew O. Finley & Linda O. Mearns, 2016. "Observation-based blended projections from ensembles of regional climate models," Climatic Change, Springer, vol. 138(1), pages 55-69, September.
  • Handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1722-1
    DOI: 10.1007/s10584-016-1722-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1722-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1722-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & Francisco Beltrán & Bruno Sansó & Ricardo T. Lemos & Roy Mendelssohn, 2012. "Joint projections of North Pacific sea surface temperature from different global climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 451-465, August.
    2. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    3. Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & David B. Stephenson & Matthew Collins & Jonathan C. Rougier & Richard E. Chandler, 2012. "Statistical problems in the probabilistic prediction of climate change," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 364-372, August.
    4. Claudia Tebaldi & Bruno Sansó, 2009. "Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 83-106, January.
    5. L. Mearns & S. Sain & L. Leung & M. Bukovsky & S. McGinnis & S. Biner & D. Caya & R. Arritt & W. Gutowski & E. Takle & M. Snyder & R. Jones & A. Nunes & S. Tucker & D. Herzmann & L. McDaniel & L. Sloa, 2013. "Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)," Climatic Change, Springer, vol. 120(4), pages 965-975, October.
    6. Smith, Richard L. & Tebaldi, Claudia & Nychka, Doug & Mearns, Linda O., 2009. "Bayesian Modeling of Uncertainty in Ensembles of Climate Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 97-116.
    7. Jonathan Rougier & Michael Goldstein & Leanna House, 2013. "Second-Order Exchangeability Analysis for Multimodel Ensembles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 852-863, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph M. Buser & Hans R. Künsch & Alain Weber, 2010. "Biases and Uncertainty in Climate Projections," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 179-199, June.
    2. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    3. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    4. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    5. Roman Olson & Soon-Il An & Yanan Fan & Jason P Evans, 2019. "Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-24, April.
    6. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    7. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    8. S. Lorenz & S. Dessai & J. Paavola & P. Forster, 2015. "The communication of physical science uncertainty in European National Adaptation Strategies," Climatic Change, Springer, vol. 132(1), pages 143-155, September.
    9. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    10. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    11. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    12. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    13. Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
    14. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    15. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    16. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    17. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.
    18. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    19. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    20. Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1722-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.