IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i4p965-975.html
   My bibliography  Save this article

Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)

Author

Listed:
  • L. Mearns
  • S. Sain
  • L. Leung
  • M. Bukovsky
  • S. McGinnis
  • S. Biner
  • D. Caya
  • R. Arritt
  • W. Gutowski
  • E. Takle
  • M. Snyder
  • R. Jones
  • A. Nunes
  • S. Tucker
  • D. Herzmann
  • L. McDaniel
  • L. Sloan

Abstract

We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs. Copyright The Author(s) 2013

Suggested Citation

  • L. Mearns & S. Sain & L. Leung & M. Bukovsky & S. McGinnis & S. Biner & D. Caya & R. Arritt & W. Gutowski & E. Takle & M. Snyder & R. Jones & A. Nunes & S. Tucker & D. Herzmann & L. McDaniel & L. Sloa, 2013. "Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)," Climatic Change, Springer, vol. 120(4), pages 965-975, October.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:4:p:965-975
    DOI: 10.1007/s10584-013-0831-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0831-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0831-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael J. Scott & Don S. Daly & Mohamad I. Hejazi & G. Page Kyle & Lu Liu & Haewon C. McJeon & Anupriya Mundra & Pralit L. Patel & Jennie S. Rice & Nathalie Voisin, 2016. "Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework," Climatic Change, Springer, vol. 136(2), pages 233-246, May.
    2. Melissa S. Bukovsky & Linda O. Mearns, 2020. "Regional climate change projections from NA-CORDEX and their relation to climate sensitivity," Climatic Change, Springer, vol. 162(2), pages 645-665, September.
    3. Yinghao Miao & Jiajia Sheng & Jin Ye, 2022. "An Assessment of the Impact of Temperature Rise Due to Climate Change on Asphalt Pavement in China," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    4. Subhra Sekhar Maity & Rajib Maity, 2022. "Changing Pattern of Intensity–Duration–Frequency Relationship of Precipitation due to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5371-5399, November.
    5. Ian Kraucunas & Leon Clarke & James Dirks & John Hathaway & Mohamad Hejazi & Kathy Hibbard & Maoyi Huang & Chunlian Jin & Michael Kintner-Meyer & Kerstin Dam & Ruby Leung & Hong-Yi Li & Richard Moss &, 2015. "Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)," Climatic Change, Springer, vol. 129(3), pages 573-588, April.
    6. Esther Salazar & Dorit Hammerling & Xia Wang & Bruno Sansó & Andrew O. Finley & Linda O. Mearns, 2016. "Observation-based blended projections from ensembles of regional climate models," Climatic Change, Springer, vol. 138(1), pages 55-69, September.
    7. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
    8. Ryan Hill & Charles Hawkins & Jiming Jin, 2014. "Predicting thermal vulnerability of stream and river ecosystems to climate change," Climatic Change, Springer, vol. 125(3), pages 399-412, August.
    9. Daniel Wallach & Linda O. Mearns & Alex C. Ruane & Reimund P. Rötter & Senthold Asseng, 2016. "Lessons from climate modeling on the design and use of ensembles for crop modeling," Climatic Change, Springer, vol. 139(3), pages 551-564, December.
    10. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    11. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:4:p:965-975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.