Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.03.113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
- Janjai, S. & Deeyai, P., 2009. "Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment," Applied Energy, Elsevier, vol. 86(4), pages 528-537, April.
- Kalogirou, Soteris A., 2003. "Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus," Renewable Energy, Elsevier, vol. 28(15), pages 2317-2334.
- Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
- Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
- Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
- Radhi, Hassan, 2009. "A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods," Renewable Energy, Elsevier, vol. 34(3), pages 869-875.
- Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
- Said, S.A.M. & Kadry, H.M., 1994. "Generation of representative weather--Year data for Saudi Arabia," Applied Energy, Elsevier, vol. 48(2), pages 131-136.
- Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2013. "Generation of a typical meteorological year for north–east, Nigeria," Applied Energy, Elsevier, vol. 112(C), pages 152-159.
- Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
- Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
- Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
- Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
- Michele Libralato & Alessandra De Angelis & Giulia Tornello & Onorio Saro & Paola D’Agaro & Giovanni Cortella, 2021. "Evaluation of Multiyear Weather Data Effects on Hygrothermal Building Energy Simulations Using WUFI Plus," Energies, MDPI, vol. 14(21), pages 1-15, November.
- Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
- Francesco Mancini & Gianluigi Lo Basso, 2020. "How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector," Energies, MDPI, vol. 13(2), pages 1-24, January.
- Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
- Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
- Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
- Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
- Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
- Li, Honglian & He, Xi & Hu, Yao & Lv, Wen & Yang, Liu, 2024. "Research on the generation method of missing hourly solar radiation data based on multiple neural network algorithm," Energy, Elsevier, vol. 287(C).
- Evola, Gianpiero & Costanzo, Vincenzo & Infantone, Marco & Marletta, Luigi, 2021. "Typical-year and multi-year building energy simulation approaches: A critical comparison," Energy, Elsevier, vol. 219(C).
- Jiaxi Hu & Chengxi Lyu & Yinzhen Hou & Neng Zhu & Kairui Liu, 2024. "Research on Summer Indoor Air Conditioning Design Parameters in Haikou City: A Field Study of Indoor Thermal Perception and Comfort," Sustainability, MDPI, vol. 16(9), pages 1-18, May.
- Chen Xu & Yu Li & Xueting Jin & Liang Yuan & Hao Cheng, 2017. "A Real-Time Energy Consumption Simulation and Comparison of Buildings in Different Construction Years in the Olympic Central Area in Beijing," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
- Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
- Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
- Haixiang Zang & Miaomiao Wang & Jing Huang & Zhinong Wei & Guoqiang Sun, 2016. "A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China," Energies, MDPI, vol. 9(12), pages 1-19, December.
- Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
- Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
- Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
- Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
- Burleyson, Casey D. & Voisin, Nathalie & Taylor, Z. Todd & Xie, Yulong & Kraucunas, Ian, 2018. "Simulated building energy demand biases resulting from the use of representative weather stations," Applied Energy, Elsevier, vol. 209(C), pages 516-528.
- Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
- Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
- Jiang, Yingni, 2010. "Generation of typical meteorological year for different climates of China," Energy, Elsevier, vol. 35(5), pages 1946-1953.
- Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
- Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
- Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
- Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
- Sun, Jingting & Li, Zhengrong & Xiao, Fu & Xiao, Jianzhuang, 2020. "Generation of typical meteorological year for integrated climate based daylight modeling and building energy simulation," Renewable Energy, Elsevier, vol. 160(C), pages 721-729.
- Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
- Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
- Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
More about this item
Keywords
Typical year; Multiyear simulation; Actual weather data; Building simulation; Energy use; Peak load;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:890-904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.