IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i1p139-147.html
   My bibliography  Save this article

Forecasting demand for single-period products: A case study in the apparel industry

Author

Listed:
  • Mostard, Julien
  • Teunter, Ruud
  • de Koster, René

Abstract

The problem considered is that of forecasting demand for single-period products before the period starts. We study this problem for the case of a mail order apparel company that needs to order its products pre-season. The lack of historical demand data implies that other sources of data are needed. Advance order data can be obtained by allowing a selected group of customers to pre-order at a discount from a preview catalogue. Judgments can be obtained from purchase managers or other company experts. In this paper, we compare several existing and new forecasting methods for both sources of data. The methods are generic and can be used in any single-period problem in the apparel or fashion industries. Among the pre-order based methods, a novel 'top-flop' approach provides promising results. For a small group of products from the case company, expert judgment methods perform better than the methods based on advance demand information. The comparative results are obviously restricted to the specific case study, and additional testing is required to determine whether they are valid in general.

Suggested Citation

  • Mostard, Julien & Teunter, Ruud & de Koster, René, 2011. "Forecasting demand for single-period products: A case study in the apparel industry," European Journal of Operational Research, Elsevier, vol. 211(1), pages 139-147, May.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:139-147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00748-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sang Hoon Chang & David E. Fyffe, 1971. "Estimation of Forecast Errors for Seasonal-Style-Goods Sales," Management Science, INFORMS, vol. 18(2), pages 89-96, October.
    2. Mostard, Julien & Teunter, Ruud, 2006. "The newsboy problem with resalable returns: A single period model and case study," European Journal of Operational Research, Elsevier, vol. 169(1), pages 81-96, February.
    3. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    4. Murali K. Mantrala & Surya Rao, 2001. "A Decision-Support System that Helps Retailers Decide Order Quantities and Markdowns for Fashion Goods," Interfaces, INFORMS, vol. 31(3_supplem), pages 146-165, June.
    5. Christopher S. Tang & Kumar Rajaram & Ayd{i}n Alptekinou{g}lu & Jihong Ou, 2004. "The Benefits of Advance Booking Discount Programs: Model and Analysis," Management Science, INFORMS, vol. 50(4), pages 465-478, April.
    6. Marshall Fisher & Kumar Rajaram & Ananth Raman, 2001. "Optimizing Inventory Replenishment of Retail Fashion Products," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 230-241, November.
    7. P C Bell, 2000. "Forecasting demand variation when there are stockouts," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 358-363, March.
    8. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    9. Mostard, Julien & de Koster, Rene & Teunter, Ruud, 2005. "The distribution-free newsboy problem with resalable returns," International Journal of Production Economics, Elsevier, vol. 97(3), pages 329-342, September.
    10. Choi, Tsan-Ming, 2007. "Pre-season stocking and pricing decisions for fashion retailers with multiple information updating," International Journal of Production Economics, Elsevier, vol. 106(1), pages 146-170, March.
    11. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    12. Kogan, Konstantin & Herbon, Avi, 2008. "Production under periodic demand update prior to a single selling season: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 184(1), pages 133-146, January.
    13. D. B. Hertz & K. H. Schaffir, 1960. "A Forecasting Method for Management of Seasonal Style-Goods Inventories," Operations Research, INFORMS, vol. 8(1), pages 45-52, February.
    14. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
    15. Suresh P. Sethi & Houmin Yan & Hanqin Zhang, 2003. "Inventory Models with Fixed Costs, Forecast Updates, and Two Delivery Modes," Operations Research, INFORMS, vol. 51(2), pages 321-328, April.
    16. Marshall Fisher & Kumar Rajaram, 2000. "Accurate Retail Testing of Fashion Merchandise: Methodology and Application," Marketing Science, INFORMS, vol. 19(3), pages 266-278, June.
    17. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    18. Chambers, M. L. & Eglese, R. W., 1988. "Forecasting demand for mail order catalogue lines during the season," European Journal of Operational Research, Elsevier, vol. 34(2), pages 131-138, March.
    19. George R. Murray, Jr. & Edward A. Silver, 1966. "A Bayesian Analysis of the Style Goods Inventory Problem," Management Science, INFORMS, vol. 12(11), pages 785-797, July.
    20. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    21. Hill, Roger M., 1997. "Applying Bayesian methodology with a uniform prior to the single period inventory model," European Journal of Operational Research, Elsevier, vol. 98(3), pages 555-562, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madhukar Nagare & Pankaj Dutta & Naoufel Cheikhrouhou, 2016. "Optimal ordering policy for newsvendor models with bidirectional changes in demand using expert judgment," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 620-647, September.
    2. Rina Tanaka & Aya Ishigaki & Tomomichi Suzuki & Masato Hamada & Wataru Kawai, 2019. "Data Analysis of Shipment for Textiles and Apparel from Logistics Warehouse to Store Considering Disposal Risk," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    3. Shuyun Ren & Hau-Ling Chan & Pratibha Ram, 2017. "A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 335-355, October.
    4. Halkos, George & Kevork, Ilias, 2012. "Unbiased estimation of maximum expected profits in the Newsvendor Model: a case study analysis," MPRA Paper 40724, University Library of Munich, Germany.
    5. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    6. Sascha Kurz & Jörg Rambau & Jörg Schlüchtermann & Rainer Wolf, 2015. "The Top-Dog Index: a new measurement for the demand consistency of the size distribution in pre-pack orders for a fashion discounter with many small branches," Annals of Operations Research, Springer, vol. 229(1), pages 541-563, June.
    7. Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
    8. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    9. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
    10. Nguyen, Duy Tan & Adulyasak, Yossiri & Landry, Sylvain, 2021. "Research manuscript: The Bullwhip Effect in rule-based supply chain planning systems–A case-based simulation at a hard goods retailer," Omega, Elsevier, vol. 98(C).
    11. Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
    12. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    13. Koppius, O.R. & Ozdemir, O. & van der Laan, E.A., 2011. "Beyond Waste Reduction: Creating Value with Information Systems in Closed-Loop Supply Chains," ERIM Report Series Research in Management ERS-2011-024-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Mei, Wanxia & Du, Li & Niu, Baozhuang & Wang, Jincheng & Feng, Jiejian, 2016. "The effects of an undisclosed regular price and a positive leadtime in a presale mechanism," European Journal of Operational Research, Elsevier, vol. 250(3), pages 1013-1025.
    15. Bai, Qingguo & Xu, Jianteng & Gong, Yeming & Chauhan, Satyaveer S., 2022. "Robust decisions for regulated sustainable manufacturing with partial demand information: Mandatory emission capacity versus emission tax," European Journal of Operational Research, Elsevier, vol. 298(3), pages 874-893.
    16. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    2. Choi, Tsan-Ming & Chow, Pui-Sze, 2008. "Mean-variance analysis of Quick Response Program," International Journal of Production Economics, Elsevier, vol. 114(2), pages 456-475, August.
    3. Choi, Tsan-Ming & Sethi, Suresh, 2010. "Innovative quick response programs: A review," International Journal of Production Economics, Elsevier, vol. 127(1), pages 1-12, September.
    4. Wanke, Peter F., 2008. "The uniform distribution as a first practical approach to new product inventory management," International Journal of Production Economics, Elsevier, vol. 114(2), pages 811-819, August.
    5. Li, Xiang & Li, Yongjian & Cai, Xiaoqiang, 2011. "On a multi-period supply chain system with supplementary order opportunity," European Journal of Operational Research, Elsevier, vol. 209(3), pages 273-284, March.
    6. Jérémie Gallien & Adam J. Mersereau & Andres Garro & Alberte Dapena Mora & Martín Nóvoa Vidal, 2015. "Initial Shipment Decisions for New Products at Zara," Operations Research, INFORMS, vol. 63(2), pages 269-286, April.
    7. Choi, Tsan-Ming & Chen, Yue & Chung, Sai Ho, 2019. "Online-offline fashion franchising supply chains without channel conflicts: Choices on postponement and contracts," International Journal of Production Economics, Elsevier, vol. 215(C), pages 174-184.
    8. Karakul, M., 2008. "Joint pricing and procurement of fashion products in the existence of clearance markets," International Journal of Production Economics, Elsevier, vol. 114(2), pages 487-506, August.
    9. Serel, Dogan A., 2009. "Optimal ordering and pricing in a quick response system," International Journal of Production Economics, Elsevier, vol. 121(2), pages 700-714, October.
    10. Choi, Tsan-Ming, 2007. "Pre-season stocking and pricing decisions for fashion retailers with multiple information updating," International Journal of Production Economics, Elsevier, vol. 106(1), pages 146-170, March.
    11. Sen, Alper & Zhang, Alex X., 2009. "Style goods pricing with demand learning," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1058-1075, August.
    12. Tong Wang & Atalay Atasu & Mümin Kurtuluş, 2012. "A Multiordering Newsvendor Model with Dynamic Forecast Evolution," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 472-484, July.
    13. Marshall Fisher, 2009. "OR FORUM--Rocket Science Retailing: The 2006 Philip McCord Morse Lecture," Operations Research, INFORMS, vol. 57(3), pages 527-540, June.
    14. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    15. Agrawal, Narendra & Smith, Stephen A., 2013. "Optimal inventory management for a retail chain with diverse store demands," European Journal of Operational Research, Elsevier, vol. 225(3), pages 393-403.
    16. Mostard, Julien & de Koster, Rene & Teunter, Ruud, 2005. "The distribution-free newsboy problem with resalable returns," International Journal of Production Economics, Elsevier, vol. 97(3), pages 329-342, September.
    17. Mukhopadhyay, Samar K. & Yue, Xiaohang & Zhu, Xiaowei, 2011. "A Stackelberg model of pricing of complementary goods under information asymmetry," International Journal of Production Economics, Elsevier, vol. 134(2), pages 424-433, December.
    18. Halkos, George & Kevork, Ilias, 2012. "Evaluating alternative estimators for optimal order quantities in the newsvendor model with skewed demand," MPRA Paper 36205, University Library of Munich, Germany.
    19. Wang, Charles X. & Webster, Scott, 2009. "The loss-averse newsvendor problem," Omega, Elsevier, vol. 37(1), pages 93-105, February.
    20. Hung, Yick-Hin & Li, Leon Y.O. & Cheng, T.C.E., 2011. "Trading reserved capacity independently among supply chains," International Journal of Production Economics, Elsevier, vol. 133(1), pages 105-112, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.