IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v128y2010i2p470-483.html
   My bibliography  Save this article

Sales forecasts in clothing industry: The key success factor of the supply chain management

Author

Listed:
  • Thomassey, Sébastien

Abstract

Like many others, Textile-apparel companies have to deal with a very competitive environment and have to manage consumers which become more demanding. Thus, to stay competitive, companies rely on sophisticated information systems and logistic skills, and especially accurate and reliable forecasting systems. However, forecasters have to deal with some singular constraints of the textile-apparel market such as for instance the volatile demand, the strong seasonality of sales, the wide number of items with short life cycle or the lack of historical data. To respond to these constraints, companies have implemented specific forecasting systems often simple but robust. After the study of existing practices in the clothing industry, we propose different forecasting models which perform more accurate and more reliable sales forecasts. These models rely on advanced methods such as fuzzy logic, neural networks and data mining. In order to evaluate the benefits of these methods for the supply chain and more especially for the reduction of the bullwhip effect, a simulation based on real data of sourcing and forecasting processes is performed and analyzed.

Suggested Citation

  • Thomassey, Sébastien, 2010. "Sales forecasts in clothing industry: The key success factor of the supply chain management," International Journal of Production Economics, Elsevier, vol. 128(2), pages 470-483, December.
  • Handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:470-483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00259-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Little, John D. C., 1998. "Integrated measures of sales, merchandising, and distribution," Working papers WP 3997-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    4. McCullough, B D, 1999. "Econometric Software Reliability: EViews, LIMDEP, SHAZAM and TSP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 191-202, March-Apr.
    5. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    6. Muller, Wolfgang & Wiederhold, Eckhard, 2002. "Applying decision tree methodology for rules extraction under cognitive constraints," European Journal of Operational Research, Elsevier, vol. 136(2), pages 282-289, January.
    7. Mak, Brenda & Munakata, Toshinori, 2002. "Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3," European Journal of Operational Research, Elsevier, vol. 136(1), pages 212-229, January.
    8. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    9. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    10. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    11. So, Kut C. & Zheng, Xiaona, 2003. "Impact of supplier's lead time and forecast demand updating on retailer's order quantity variability in a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 86(2), pages 169-179, November.
    12. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
    13. De Toni, Alberto & Meneghetti, Antonella, 2000. "The production planning process for a network of firms in the textile-apparel industry," International Journal of Production Economics, Elsevier, vol. 65(1), pages 17-32, April.
    14. Kuo, R. J., 2001. "A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm," European Journal of Operational Research, Elsevier, vol. 129(3), pages 496-517, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    2. Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
    3. Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 0. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    4. Rina Tanaka & Aya Ishigaki & Tomomichi Suzuki & Masato Hamada & Wataru Kawai, 2019. "Data Analysis of Shipment for Textiles and Apparel from Logistics Warehouse to Store Considering Disposal Risk," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    5. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    6. Zhi-Hua Hu & Qing Li & Xian-Juan Chen & Yan-Feng Wang, 2014. "Sustainable Rent-Based Closed-Loop Supply Chain for Fashion Products," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    7. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    8. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
    9. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
    10. Xide Zhu & Peijun Guo, 2020. "Bilevel programming approaches to production planning for multiple products with short life cycles," 4OR, Springer, vol. 18(2), pages 151-175, June.
    11. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    12. Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 2021. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 23(1), pages 53-69, February.
    13. Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
    14. Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
    15. NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
    16. Hao Lin & Guannan Liu & Junjie Wu & J. Leon Zhao, 2024. "Deterring the Gray Market: Product Diversion Detection via Learning Disentangled Representations of Multivariate Time Series," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 571-586, March.
    17. Caniato, Federico & Caridi, Maria & Moretto, Antonella & Sianesi, Andrea & Spina, Gianluca, 2014. "Integrating international fashion retail into new product development," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 294-306.
    18. You-Shyang Chen & Arun Kumar Sangaiah & Yu-Pei Lin, 2024. "Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management," Annals of Operations Research, Springer, vol. 342(1), pages 215-264, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    2. de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.
    3. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    4. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    5. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    6. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    7. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
    8. Pegdwendé Minoungou & Vincent Mousseau & Wassila Ouerdane & Paolo Scotton, 2023. "A MIP-based approach to learn MR-Sort models with single-peaked preferences," Annals of Operations Research, Springer, vol. 325(2), pages 795-817, June.
    9. Oppio, Alessandra & Dell’Ovo, Marta & Torrieri, Francesca & Miebs, Grzegorz & Kadziński, Miłosz, 2020. "Understanding the drivers of Urban Development Agreements with the rough set approach and robust decision rules," Land Use Policy, Elsevier, vol. 96(C).
    10. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 217-245, April.
    11. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    12. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    13. Chakhar, Salem & Ishizaka, Alessio & Labib, Ashraf & Saad, Inès, 2016. "Dominance-based rough set approach for group decisions," European Journal of Operational Research, Elsevier, vol. 251(1), pages 206-224.
    14. Fernandez, Eduardo & Navarro, Jorge & Bernal, Sergio, 2009. "Multicriteria sorting using a valued indifference relation under a preference disaggregation paradigm," European Journal of Operational Research, Elsevier, vol. 198(2), pages 602-609, October.
    15. Yuan Li & Xiuwu Liao & Wenhong Zhao, 2009. "A rough set approach to knowledge discovery in analyzing competitive advantages of firms," Annals of Operations Research, Springer, vol. 168(1), pages 205-223, April.
    16. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    17. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.
    18. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    19. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    20. Wu, Siqi & Wu, Meng & Dong, Yucheng & Liang, Haiming & Zhao, Sihai, 2020. "The 2-rank additive model with axiomatic design in multiple attribute decision making," European Journal of Operational Research, Elsevier, vol. 287(2), pages 536-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:470-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.