IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v184y2008i3p1140-1154.html
   My bibliography  Save this article

Application of machine learning techniques for supply chain demand forecasting

Author

Listed:
  • Carbonneau, Real
  • Laframboise, Kevin
  • Vahidov, Rustam

Abstract

No abstract is available for this item.

Suggested Citation

  • Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
  • Handle: RePEc:eee:ejores:v:184:y:2008:i:3:p:1140-1154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01205-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rüping, Stefan & Morik, Katharina, 2003. "Support vector machines and learning about time," Technical Reports 2003,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    3. Thonemann, U. W., 2002. "Improving supply-chain performance by sharing advance demand information," European Journal of Operational Research, Elsevier, vol. 142(1), pages 81-107, October.
    4. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    5. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    6. Gunasekaran, A., 2004. "Supply chain management: Theory and applications," European Journal of Operational Research, Elsevier, vol. 159(2), pages 265-268, December.
    7. Gunasekaran, A. & Ngai, E. W. T., 2004. "Information systems in supply chain integration and management," European Journal of Operational Research, Elsevier, vol. 159(2), pages 269-295, December.
    8. Yusuf, Y. Y. & Gunasekaran, A. & Adeleye, E. O. & Sivayoganathan, K., 2004. "Agile supply chain capabilities: Determinants of competitive objectives," European Journal of Operational Research, Elsevier, vol. 159(2), pages 379-392, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristianto, Yohanes & Helo, Petri & Jiao, Jianxin (Roger) & Sandhu, Maqsood, 2012. "Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains," European Journal of Operational Research, Elsevier, vol. 216(2), pages 346-355.
    2. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    3. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    4. Chiang, Chung-Yean & Lin, Winston T. & Suresh, Nallan C., 2016. "An empirically-simulated investigation of the impact of demand forecasting on the bullwhip effect: Evidence from U.S. auto industry," International Journal of Production Economics, Elsevier, vol. 177(C), pages 53-65.
    5. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    6. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    7. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    8. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    9. Fu-ren Lin & Shyh-ming Lin, 2006. "Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(4), pages 1-1.
    10. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    11. Nurmilaakso, Juha-Miikka, 2008. "Adoption of e-business functions and migration from EDI-based to XML-based e-business frameworks in supply chain integration," International Journal of Production Economics, Elsevier, vol. 113(2), pages 721-733, June.
    12. Warburton, Roger D.H. & Hodgson, J.P.E. & Nielsen, E.H., 2014. "Exact solutions to the supply chain equations for arbitrary, time-dependent demands," International Journal of Production Economics, Elsevier, vol. 151(C), pages 195-205.
    13. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    14. Miragliotta, Giovanni, 2006. "Layers and mechanisms: A new taxonomy for the Bullwhip Effect," International Journal of Production Economics, Elsevier, vol. 104(2), pages 365-381, December.
    15. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    16. Tan, Tarkan & Gullu, Refik & Erkip, Nesim, 2007. "Modelling imperfect advance demand information and analysis of optimal inventory policies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 897-923, March.
    17. Anantaram Balakrishnan & Joseph Geunes & Michael S. Pangburn, 2004. "Coordinating Supply Chains by Controlling Upstream Variability Propagation," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 163-183, July.
    18. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    19. Lin, J. & Naim, M.M. & Purvis, L. & Gosling, J., 2017. "The extension and exploitation of the inventory and order based production control system archetype from 1982 to 2015," International Journal of Production Economics, Elsevier, vol. 194(C), pages 135-152.
    20. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:184:y:2008:i:3:p:1140-1154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.