IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p573-d1338594.html
   My bibliography  Save this article

Supply Chain Inventory Management from the Perspective of “Cloud Supply Chain”—A Data Driven Approach

Author

Listed:
  • Yue Tan

    (College of Business, Southern University of Science and Technology, Shenzhen 518055, China)

  • Liyi Gu

    (College of Business, Southern University of Science and Technology, Shenzhen 518055, China)

  • Senyu Xu

    (School of Business, Shenzhen Institute of Technology, Shenzhen 518000, China)

  • Mingchao Li

    (School of Business, Shenzhen Institute of Technology, Shenzhen 518000, China)

Abstract

This study systematically investigates the pivotal role of inventory management within the framework of “cloud supply chain” operations, emphasizing the efficacy of leveraging machine learning methodologies for inventory allocation with the dual objectives of cost reduction and heightened customer satisfaction. Employing a rigorous data-driven approach, the research endeavors to address inventory allocation challenges inherent in the complex dynamics of a “cloud supply chain” through the implementation of a two-stage model. Initially, machine learning is harnessed for demand forecasting, subsequently refined through the empirical distribution of forecast errors, culminating in the optimization of inventory allocation across various service levels.The empirical evaluation draws upon data derived from a reputable home appliance logistics company in China, revealing that, under conditions of ample data, the application of data-driven methods for inventory allocation surpasses the performance of traditional methods across diverse supply chain structures. Specifically, there is an improvement in accuracy by approximately 13% in an independent structure and about 16% in a dependent structure. This study transcends the constraints associated with examining a singular node, adopting an innovative research perspective that intricately explores the interplay among multiple nodes while elucidating the nuanced considerations germane to supply chain structure. Furthermore, it underscores the methodological significance of relying on extensive, large-scale data. The investigation brings to light the substantial impact of supply chain structure on safety stock allocation. In the context of a market characterized by highly uncertain demand, the strategic adaptation of the supply chain structure emerges as a proactive measure to avert potential disruptions in the supply chain.

Suggested Citation

  • Yue Tan & Liyi Gu & Senyu Xu & Mingchao Li, 2024. "Supply Chain Inventory Management from the Perspective of “Cloud Supply Chain”—A Data Driven Approach," Mathematics, MDPI, vol. 12(4), pages 1-30, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:573-:d:1338594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
    2. Chien-Chih Wang & Hsin-Tzu Chang & Chun-Hua Chien, 2022. "Hybrid LSTM-ARMA Demand-Forecasting Model Based on Error Compensation for Integrated Circuit Tray Manufacturing," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    3. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    4. Han Jiang & Yunlong Wu & Qing Zhang, 2020. "Optimization of Ordering and Allocation Scheme for Distributed Material Warehouse Based on IGA-SA Algorithm," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    5. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    6. Robert C. Carlson & Candace A. Yano, 1986. "Safety Stocks in MRP---Systems with Emergency Setups for Components," Management Science, INFORMS, vol. 32(4), pages 403-412, April.
    7. Afshin Oroojlooyjadid & Lawrence V. Snyder & Martin Takáč, 2020. "Applying deep learning to the newsvendor problem," IISE Transactions, Taylor & Francis Journals, vol. 52(4), pages 444-463, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, João N.C. & Sameiro Carvalho, M. & Cortez, Paulo, 2020. "Operations research models and methods for safety stock determination: A review," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    3. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    4. Bordley, Robert & Beltramo, Mark & Blumenfeld, Dennis, 1999. "Consolidating distribution centers can reduce lost sales," International Journal of Production Economics, Elsevier, vol. 58(1), pages 57-61, January.
    5. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    6. Praveen Puram & Soumya Roy & Deepak Srivastav & Anand Gurumurthy, 2023. "Understanding the effect of contextual factors and decision making on team performance in Twenty20 cricket: an interpretable machine learning approach," Annals of Operations Research, Springer, vol. 325(1), pages 261-288, June.
    7. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    8. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    9. Scott Webster & Z. Kevin Weng, 2001. "Improving Repetitive Manufacturing Systems: Model and Insights," Operations Research, INFORMS, vol. 49(1), pages 99-106, February.
    10. Lechtenberg, Sandra & de Siqueira Braga, Diego & Hellingrath, Bernd, 2019. "Automatic identification system (AIS) data based ship-supply forecasting," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 3-24, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Kumar, Anupam & Evers, Philip T., 2015. "Setting safety stock based on imprecise records," International Journal of Production Economics, Elsevier, vol. 169(C), pages 68-75.
    12. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    13. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    14. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    15. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    16. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2021. "Distributional regression for demand forecasting in e-grocery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 831-842.
    17. Yucesan, Enver & de Groote, Xavier, 2000. "Lead times, order release mechanisms, and customer service," European Journal of Operational Research, Elsevier, vol. 120(1), pages 118-130, January.
    18. Malo Huard & Rémy Garnier & Gilles Stoltz, 2020. "Hierarchical robust aggregation of sales forecasts at aggregated levels in e-commerce, based on exponential smoothing and Holt's linear trend method," Working Papers hal-02794320, HAL.
    19. Chen, Youhua Frank, 2005. "Fractional programming approach to two stochastic inventory problems," European Journal of Operational Research, Elsevier, vol. 160(1), pages 63-71, January.
    20. Daniela Favaretto & Alessandro Marin & Marco Tolotti, 2023. "A theoretical validation of the DDMRP reorder policy," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:573-:d:1338594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.