IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v216y2014i1p23-3410.1007-s10479-013-1395-3.html
   My bibliography  Save this article

A network-based data mining approach to portfolio selection via weighted clique relaxations

Author

Listed:
  • Vladimir Boginski
  • Sergiy Butenko
  • Oleg Shirokikh
  • Svyatoslav Trukhanov
  • Jaime Gil Lafuente

Abstract

We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight s-plexes in the obtained networks. The considered approach is based on the weighted market graph model, which is used for identifying clusters of stocks according to a correlation-based criterion. The proposed techniques provide a new framework for selecting profitable diversified portfolios, which is verified by computational experiments on historical data over the past decade. In addition, the proposed approach can be used as a complementary tool for narrowing down a set of “candidate” stocks for a diversified portfolio, which can potentially be analyzed using other known portfolio selection techniques. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
  • Handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:23-34:10.1007/s10479-013-1395-3
    DOI: 10.1007/s10479-013-1395-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1395-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1395-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    2. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    3. Edwin J. Elton & Martin J. Gruber, 1997. "Modern Portfolio Theory, 1950 to Date," New York University, Leonard N. Stern School Finance Department Working Paper Seires 97-3, New York University, Leonard N. Stern School of Business-.
    4. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    5. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    6. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    7. Elton, Edwin J. & Gruber, Martin J., 1997. "Modern portfolio theory, 1950 to date," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1743-1759, December.
    8. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
    9. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    10. R. Luce, 1950. "Connectivity and generalized cliques in sociometric group structure," Psychometrika, Springer;The Psychometric Society, vol. 15(2), pages 169-190, June.
    11. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    2. V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos, 2018. "Optimal decision for the market graph identification problem in a sign similarity network," Annals of Operations Research, Springer, vol. 266(1), pages 313-327, July.
    3. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    4. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    5. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    6. Bruno Nogueira & Rian G. S. Pinheiro, 2020. "A GPU based local search algorithm for the unweighted and weighted maximum s-plex problems," Annals of Operations Research, Springer, vol. 284(1), pages 367-400, January.
    7. Bruno Scalzo Dees & Ljubisa Stankovic & Anthony G. Constantinides & Danilo P. Mandic, 2019. "Portfolio Cuts: A Graph-Theoretic Framework to Diversification," Papers 1910.05561, arXiv.org, revised Oct 2019.
    8. Shreya Patki & Roy H. Kwon & Yuri Lawryshyn, 2024. "Centrality-Based Equal Risk Contribution Portfolio," Risks, MDPI, vol. 12(1), pages 1-17, January.
    9. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2018. "Asset allocation: new evidence through network approaches," Papers 1810.09825, arXiv.org.
    10. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    11. Seo Woo Hong & Pierre Miasnikof & Roy Kwon & Yuri Lawryshyn, 2021. "Market Graph Clustering via QUBO and Digital Annealing," JRFM, MDPI, vol. 14(1), pages 1-13, January.
    12. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2021. "Asset allocation: new evidence through network approaches," Annals of Operations Research, Springer, vol. 299(1), pages 61-80, April.
    13. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    14. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    15. Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    2. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    3. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    4. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    5. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    6. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    7. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    8. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    9. Yuichi Asahiro & Tomohiro Kubo & Eiji Miyano, 2019. "Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 143-161, October.
    10. Alexander Veremyev & Oleg A. Prokopyev & Sergiy Butenko & Eduardo L. Pasiliao, 2016. "Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs," Computational Optimization and Applications, Springer, vol. 64(1), pages 177-214, May.
    11. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    12. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    13. Foad Mahdavi Pajouh & Zhuqi Miao & Balabhaskar Balasundaram, 2014. "A branch-and-bound approach for maximum quasi-cliques," Annals of Operations Research, Springer, vol. 216(1), pages 145-161, May.
    14. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    15. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    16. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    17. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    18. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    19. Pattitoni, Pierpaolo & Savioli, Marco, 2011. "Investment choices: Indivisible non-marketable assets and suboptimal solutions," Economic Modelling, Elsevier, vol. 28(6), pages 2387-2394.
    20. Gregory Price & Warren Whatley, 2021. "Did profitable slave trading enable the expansion of empire?: The Asiento de Negros, the South Sea Company and the financial revolution in Great Britain," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 15(3), pages 675-718, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:23-34:10.1007/s10479-013-1395-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.