IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v10y2013i2p81-103.html
   My bibliography  Save this article

Computational study of the US stock market evolution: a rank correlation-based network model

Author

Listed:
  • Oleg Shirokikh
  • Grigory Pastukhov
  • Vladimir Boginski
  • Sergiy Butenko

Abstract

This paper presents a computational study of global characteristics of the US stock market using a network-based model referred to as the market graph. The market graph reflects similarity patterns between stock return fluctuations via linking pairs of stocks that exhibit “coordinated” behavior over a specified period of time. We utilized Spearman rank correlation as a measure of similarity between stocks and considered the evolution of the market graph over the recent decade between 2001–2011. The observed market graph characteristics reveal interesting trends in the stock market over time, as well as allow one to use this model to identify cohesive clusters of stocks in the market. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
  • Handle: RePEc:spr:comgts:v:10:y:2013:i:2:p:81-103
    DOI: 10.1007/s10287-012-0160-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-012-0160-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-012-0160-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
    4. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    5. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A., 2022. "Reliability of maximum spanning tree identification in correlation-based market networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos, 2018. "Optimal decision for the market graph identification problem in a sign similarity network," Annals of Operations Research, Springer, vol. 266(1), pages 313-327, July.
    3. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    4. Dong, Zhiliang & An, Haizhong & Liu, Sen & Li, Zhengyang & Yuan, Meng, 2020. "Research on the time-varying network structure evolution of the stock indices of the BRICS countries based on fluctuation correlation," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 63-74.
    5. V. A. Kalyagin & P. A. Koldanov & P. M. Pardalos, 2015. "Optimal decision for the market graph identification problem in sign similarity network," Papers 1512.06449, arXiv.org.
    6. Alina Zaharia, 2021. "Estimation of Correlation between Capital Markets. Analysing the case of Central and Eastern European markets in the context of the COVID-19 pandemic," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 13(1), pages 61-78, June.
    7. Neto, José de Paula Neves & Figueiredo, Daniel Ratton, 2023. "Ranking influential and influenced stocks over time using transfer entropy networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Dmitry Semenov & Alexander Koldanov & Petr Koldanov, 2024. "Analysis of weakly correlated nodes in market network," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    9. Halkos, George & Tsilika, Kyriaki, 2016. "Measures of correlation and computer algebra," MPRA Paper 70200, University Library of Munich, Germany.
    10. Riccardo De Blasis & Luca Galati & Rosanna Grassi & Giorgio Rizzini, 2024. "Information Flow in the FTX Bankruptcy: A Network Approach," Papers 2407.12683, arXiv.org.
    11. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    12. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    13. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2015. "An autocatalytic network model for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 122-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    2. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    3. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    5. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    6. Elisa Letizia & Fabrizio Lillo, 2017. "Corporate payments networks and credit risk rating," Papers 1711.07677, arXiv.org, revised Sep 2018.
    7. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    8. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    9. Mensah, Jones Odei & Premaratne, Gamini, 2018. "Dependence patterns among Asian banking sector stocks: A copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 357-388.
    10. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    11. Alexeev, Vitali & Tapon, Francis, 2011. "Testing weak form efficiency on the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 661-691, September.
    12. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    13. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    14. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    15. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    16. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    17. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    19. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    20. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:10:y:2013:i:2:p:81-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.