IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.07101.html
   My bibliography  Save this paper

Location and portfolio selection problems: A unified framework

Author

Listed:
  • Justo Puerto
  • Moises Rodr'iguez-Madrena
  • Andrea Scozzari

Abstract

Given a set of assets and an investment capital, the classical portfolio selection problem consists in determining the amount of capital to be invested in each asset in order to build the most profitable portfolio. The portfolio optimization problem is naturally modeled as a mean-risk bi-criteria optimization problem where the mean rate of return of the portfolio must be maximized whereas a given risk measure must be minimized. Several mathematical programming models and techniques have been presented in the literature in order to efficiently solve the portfolio problem. A relatively recent promising line of research is to exploit clustering information of an assets network in order to develop new portfolio optimization paradigms. In this paper we endow the assets network with a metric based on correlation coefficients between assets' returns, and show how classical location problems on networks can be used for clustering assets. In particular, by adding a new criterion to the portfolio selection problem based on an objective function of a classical location problem, we are able to measure the effect of clustering on the selected assets with respect to the non-selected ones. Most papers dealing with clustering and portfolio selection models solve these problems in two distinct steps: cluster first and then selection. The innovative contribution of this paper is that we propose a Mixed-Integer Linear Programming formulation for dealing with this problem in a unified phase. The effectiveness of our approach is validated reporting some preliminary computational experiments on some real financial dataset.

Suggested Citation

  • Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
  • Handle: RePEc:arx:papers:1907.07101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.07101
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    2. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    3. Edwin J. Elton & Martin J. Gruber & Jonathan Spitzer, 2006. "Improved Estimates of Correlation Coefficients and their Impact on Optimum Portfolios," European Financial Management, European Financial Management Association, vol. 12(3), pages 303-318, June.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    6. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    7. Vijay K. Chopra & William T. Ziemba, 2013. "The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 21, pages 365-373, World Scientific Publishing Co. Pte. Ltd..
    8. Matthias Ehrgott, 2006. "A discussion of scalarization techniques for multiple objective integer programming," Annals of Operations Research, Springer, vol. 147(1), pages 343-360, October.
    9. Bruni, Renato & Cesarone, Francesco & Scozzari, Andrea & Tardella, Fabio, 2017. "On exact and approximate stochastic dominance strategies for portfolio selection," European Journal of Operational Research, Elsevier, vol. 259(1), pages 322-329.
    10. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    11. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    14. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    15. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    16. Kullmann, L & Kertész, J & Mantegna, R.N, 2000. "Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 412-419.
    17. Francesco Cesarone & Fabio Tardella, 2017. "Equal Risk Bounding is better than Risk Parity for portfolio selection," Journal of Global Optimization, Springer, vol. 68(2), pages 439-461, June.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    19. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    20. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    21. L. Kullmann & J. Kertesz & K. Kaski, 2002. "Time dependent cross correlations between different stock returns: A directed network of influence," Papers cond-mat/0203256, arXiv.org, revised May 2002.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justo Puerto & Federica Ricca & Mois'es Rodr'iguez-Madrena & Andrea Scozzari, 2021. "A combinatorial optimization approach to scenario filtering in portfolio selection," Papers 2103.01123, arXiv.org.
    2. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    3. Francesco Cesarone & Rosella Giacometti & Manuel Luis Martino & Fabio Tardella, 2023. "A return-diversification approach to portfolio selection," Papers 2312.09707, arXiv.org.
    4. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    5. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    6. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    7. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    8. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    9. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    10. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2018. "Asset allocation: new evidence through network approaches," Papers 1810.09825, arXiv.org.
    11. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    12. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    13. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    14. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2021. "Asset allocation: new evidence through network approaches," Annals of Operations Research, Springer, vol. 299(1), pages 61-80, April.
    15. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    16. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2022. "Smart network based portfolios," Annals of Operations Research, Springer, vol. 316(2), pages 1519-1541, September.
    17. Francesco Cesarone & Massimiliano Corradini & Lorenzo Lampariello & Jessica Riccioni, 2023. "A new behavioral model for portfolio selection using the Half-Full/Half-Empty approach," Papers 2312.10749, arXiv.org.
    18. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    19. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.
    20. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.07101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.