IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i11p2580-2593.html
   My bibliography  Save this article

Wavelet-based detection of outliers in financial time series

Author

Listed:
  • Grané, Aurea
  • Veiga, Helena

Abstract

Outliers in financial data can lead to model parameter estimation biases, invalid inferences and poor volatility forecasts. Therefore, their detection and correction should be taken seriously when modeling financial data. The present paper focuses on these issues and proposes a general detection and correction method based on wavelets that can be applied to a large class of volatility models. The effectiveness of the new proposal is tested by an intensive Monte Carlo study for six well-known volatility models and compared to alternative proposals in the literature, before it is applied to three daily stock market indices. The Monte Carlo experiments show that the new method is both very effective in detecting isolated outliers and outlier patches and much more reliable than other alternatives, since it detects a significantly smaller number of false outliers. Correcting the data of outliers reduces the skewness and the excess kurtosis of the return series distributions and allows for more accurate return prediction intervals compared to those obtained when the existence of outliers is ignored.

Suggested Citation

  • Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2580-2593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00462-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teräsvirta, Timo, 1996. "Two Stylized Facts and the Garch (1,1) Model," SSE/EFI Working Paper Series in Economics and Finance 96, Stockholm School of Economics.
    2. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Post-Print hal-00765466, HAL.
    3. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    4. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
    5. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    6. Xibin Zhang, 2004. "Assessment of Local Influence in GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 301-313, March.
    7. Jurgen A. Doornik & Marius Ooms, 2005. "Outlier Detection in GARCH Models," Tinbergen Institute Discussion Papers 05-092/4, Tinbergen Institute.
    8. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    9. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Seth A. Greenblatt, 1994. "Wavelets in Econometrics: An Application to Outlier Testing," Econometrics 9410001, University Library of Munich, Germany.
    14. Gallegati Marco & Gallegati Mauro, 2007. "Wavelet Variance Analysis of Output in G-7 Countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(3), pages 1-25, September.
    15. Kiefer, Nicholas M. & Salmon, Mark, 1983. "Testing normality in econometric models," Economics Letters, Elsevier, vol. 11(1-2), pages 123-127.
    16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    17. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    18. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    19. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    20. Galeano, Pedro & Pena, Daniel & Tsay, Ruey S., 2006. "Outlier Detection in Multivariate Time Series by Projection Pursuit," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 654-669, June.
    21. Xibin Zhang & Maxwell L. King, 2005. "Influence Diagnostics in Generalized Autoregressive Conditional Heteroscedasticity Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 118-129, January.
    22. Peter M. Summers, 2005. "What caused the Great Moderation? : some cross-country evidence," Economic Review, Federal Reserve Bank of Kansas City, vol. 90(Q III), pages 5-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisa Crosato & Luigi Grossi, 2019. "Correcting outliers in GARCH models: a weighted forward approach," Statistical Papers, Springer, vol. 60(6), pages 1939-1970, December.
    2. Milda Norkute, 2015. "Can the sectoral New Keynesian Phillips curve explain inflation dynamics in the Euro Area?," Empirical Economics, Springer, vol. 49(4), pages 1191-1216, December.
    3. Somayeh Kokabisaghi & Eric J. Pauwels & Katrien Van Meulder & André B. Dorsman, 2018. "Are These Shocks for Real? Sensitivity Analysis of the Significance of the Wavelet Response to Some CKLS Processes," IJFS, MDPI, vol. 6(3), pages 1-12, September.
    4. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    5. Akouemo, Hermine N. & Povinelli, Richard J., 2016. "Probabilistic anomaly detection in natural gas time series data," International Journal of Forecasting, Elsevier, vol. 32(3), pages 948-956.
    6. Liu, Shuyu & Huang, Shupei & Chi, Yuxi & Feng, Sida & Li, Yang & Sun, Qingru, 2020. "Three-level network analysis of the North American natural gas price: A multiscale perspective," International Review of Financial Analysis, Elsevier, vol. 67(C).
    7. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
    8. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Anupam Dutta & Elie Bouri & David Roubaud, 2021. "Modelling the volatility of crude oil returns: Jumps and volatility forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 889-897, January.
    10. Grané, Aurea & Martín-Barragán, Belén & Veiga, Helena, 2014. "Outliers in multivariate Garch models," DES - Working Papers. Statistics and Econometrics. WS ws140503, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Gallegati, Marco & Ramsey, James B. & Semmler, Willi, 2014. "Interest rate spreads and output: A time scale decomposition analysis using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 283-290.
    12. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    13. Carnero, M. Angeles & Peña, Daniel & Ruiz, Esther, 2012. "Estimating GARCH volatility in the presence of outliers," Economics Letters, Elsevier, vol. 114(1), pages 86-90.
    14. Milda Norkute & Joakim Westerlund, 2024. "A Factor‐Augmented New Keynesian Phillips Curve for the European Union Countries," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 794-810, August.
    15. Kojić, Milena & Schlüter, Stephan & Mitić, Petar & Hanić, Aida, 2022. "Economy-environment nexus in developed European countries: Evidence from multifractal and wavelet analysis," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Yaqoob, Tanzeela & Maqsood, Arfa, 2024. "The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources," Resources Policy, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    3. Veiga, Helena, 2009. "Wavelet-based detection of outliers in volatility models," DES - Working Papers. Statistics and Econometrics. WS ws090403, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    5. Lisa Crosato & Luigi Grossi, 2019. "Correcting outliers in GARCH models: a weighted forward approach," Statistical Papers, Springer, vol. 60(6), pages 1939-1970, December.
    6. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    7. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    8. Grané, Aurea & Martín-Barragán, Belén & Veiga, Helena, 2014. "Outliers in multivariate Garch models," DES - Working Papers. Statistics and Econometrics. WS ws140503, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
    10. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    11. Vasiliki Chatzikonstanti & Michail Karoglou, 2022. "Can black swans be tamed with a flexible mean‐variance specification?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3202-3227, July.
    12. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
    13. E. Ruiz & M.A. Carnero & D. Pereira, 2004. "Effects of Level Outliers on the Identification and Estimation of GARCH Models," Econometric Society 2004 Australasian Meetings 21, Econometric Society.
    14. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    15. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
    16. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    18. Charles, Amélie & Darné, Olivier & Pop, Adrian, 2015. "Risk and ethical investment: Empirical evidence from Dow Jones Islamic indexes," Research in International Business and Finance, Elsevier, vol. 35(C), pages 33-56.
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2580-2593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.