IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i1p86-101.html
   My bibliography  Save this article

On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs

Author

Listed:
  • Veremyev, Alexander
  • Boginski, Vladimir
  • Pasiliao, Eduardo L.
  • Prokopyev, Oleg A.

Abstract

We consider the maximum 2-club problem, which aims at finding an induced subgraph of maximum cardinality with the diameter at most two. Such subgraphs arise from a popular diameter-based clique relaxation concept, as a subgraph is a clique if and only if its diameter is one. In a 2-club every pair of non-adjacent vertices has a common neighbor; this “2-hop” property naturally arises in a variety of applications. In this paper, by exploiting a somewhat different interpretation of the problem, we provide two new mixed-integer programming (MIP) models for finding maximum 2-clubs. Our MIPs provide much tighter linear programming (LP) relaxations for sufficiently sparse graphs and have fewer constraints than the standard integer programming (IP) model at the expense of having slightly more continuous variables. We also consider feasibility versions of our MIPs that verify whether there exists a 2-club of some specified size. Then we incorporate them into a simple-to-implement “feasibility-check” algorithm that iteratively solves one of the feasibility MIPs for each possible 2-club size within some known lower and upper bounds. The upper bound is obtained from an LP relaxation of our new MIPs and is shown to be sharp. Furthermore, we show how to extend our approaches for solving some “robust” (attack- and failure-tolerant) generalizations of the maximum 2-club problem. Finally, we perform an extensive computational study with randomly generated and real-life graphs to support our theoretical results and to provide some empirical observations and insights.

Suggested Citation

  • Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:86-101
    DOI: 10.1016/j.ejor.2021.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721004227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    2. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    3. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    4. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    5. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    6. Alexander Veremyev & Oleg A. Prokopyev & Sergiy Butenko & Eduardo L. Pasiliao, 2016. "Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs," Computational Optimization and Applications, Springer, vol. 64(1), pages 177-214, May.
    7. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    8. Anurag Verma & Austin Buchanan & Sergiy Butenko, 2015. "Solving the Maximum Clique and Vertex Coloring Problems on Very Large Sparse Networks," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 164-177, February.
    9. Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
    10. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    11. Butenko, S. & Wilhelm, W.E., 2006. "Clique-detection models in computational biochemistry and genomics," European Journal of Operational Research, Elsevier, vol. 173(1), pages 1-17, August.
    12. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    13. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    14. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    15. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
    16. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    17. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    2. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    3. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    4. Almeida, Maria Teresa & Carvalho, Filipa D., 2014. "An analytical comparison of the LP relaxations of integer models for the k-club problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 489-498.
    5. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    6. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    7. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    8. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    9. Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
    10. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    11. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques," Working Papers 1722, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Shahram Shahinpour & Sergiy Butenko, 2013. "Algorithms for the maximum k-club problem in graphs," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 520-554, October.
    13. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    14. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    15. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    16. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    17. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    18. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    19. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    20. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:86-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.