IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v266y2018i1d10.1007_s10479-017-2491-6.html
   My bibliography  Save this article

Optimal decision for the market graph identification problem in a sign similarity network

Author

Listed:
  • V. A. Kalyagin

    (National Research University Higher School of Economics)

  • A. P. Koldanov

    (National Research University Higher School of Economics)

  • P. A. Koldanov

    (National Research University Higher School of Economics)

  • P. M. Pardalos

    (National Research University Higher School of Economics
    University of Florida)

Abstract

Research into the market graph is attracting increasing attention in stock market analysis. One of the important problems connected with the market graph is its identification from observations. The standard way of identifying the market graph is to use a simple procedure based on statistical estimations of Pearson correlations between pairs of stocks. Recently a new class of statistical procedures for market graph identification was introduced and the optimality of these procedures in the Pearson correlation Gaussian network was proved. However, the procedures obtained have a high reliability only for Gaussian multivariate distributions of stock attributes. One of the ways to correct this problem is to consider different networks generated by different measures of pairwise similarity of stocks. A new and promising model in this context is the sign similarity network. In this paper the market graph identification problem in the sign similarity network is reviewed. A new class of statistical procedures for the market graph identification is introduced and the optimality of these procedures is proved. Numerical experiments reveal an essential difference in the quality between optimal procedures in sign similarity and Pearson correlation networks. In particular, it is observed that the quality of the optimal identification procedure in the sign similarity network is not sensitive to the assumptions on the distribution of stock attributes.

Suggested Citation

  • V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos, 2018. "Optimal decision for the market graph identification problem in a sign similarity network," Annals of Operations Research, Springer, vol. 266(1), pages 313-327, July.
  • Handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2491-6
    DOI: 10.1007/s10479-017-2491-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2491-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2491-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Grigory Bautin & Valery Kalyagin & Alexander Koldanov & Petr Koldanov & Panos Pardalos, 2013. "Simple measure of similarity for the market graph construction," Computational Management Science, Springer, vol. 10(2), pages 105-124, June.
    4. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    5. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    6. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    7. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    8. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    9. A. Vizgunov & B. Goldengorin & V. Kalyagin & A. Koldanov & P. Koldanov & P. Pardalos, 2014. "Network approach for the Russian stock market," Computational Management Science, Springer, vol. 11(1), pages 45-55, January.
    10. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    11. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    12. Namaki, A. & Shirazi, A.H. & Raei, R. & Jafari, G.R., 2011. "Network analysis of a financial market based on genuine correlation and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3835-3841.
    13. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    2. Seo Woo Hong & Pierre Miasnikof & Roy Kwon & Yuri Lawryshyn, 2021. "Market Graph Clustering via QUBO and Digital Annealing," JRFM, MDPI, vol. 14(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. A. Kalyagin & P. A. Koldanov & P. M. Pardalos, 2015. "Optimal decision for the market graph identification problem in sign similarity network," Papers 1512.06449, arXiv.org.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    4. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    5. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    6. Gang-Jin Wang & Chi Xie & Peng Zhang & Feng Han & Shou Chen, 2014. "Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, May.
    7. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    8. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    9. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    10. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    11. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    12. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    13. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    15. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    16. Kartikay Gupta & Niladri Chatterjee, 2020. "Examining Lead-Lag Relationships In-Depth, With Focus On FX Market As Covid-19 Crises Unfolds," Papers 2004.10560, arXiv.org, revised May 2020.
    17. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    18. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    19. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    20. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2491-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.