IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v22y2024i4d10.1007_s10288-023-00559-z.html
   My bibliography  Save this article

On finding the community with maximum persistence probability

Author

Listed:
  • Alessandro Avellone

    (Università degli Studi di Milano-Bicocca)

  • Stefano Benati

    (Università degli Studi di Trento)

  • Rosanna Grassi

    (Università degli Studi di Milano-Bicocca)

  • Giorgio Rizzini

    (Scuola Normale Superiore)

Abstract

Persistence probability is a statistical index for detecting one or more communities embedded in a network. However, despite its straightforward definition (the probability that a random walk remains in a group of nodes after a time period), it is seldom used, possibly because of the difficulty of developing an efficient algorithm to calculate it. Proposed here is a new mathematical programming model to find the community with the largest persistence probability. The model is formulated as integer fractional programming and then is reduced to mixed-integer linear programming with appropriate variable substitutions. Nevertheless, the exact problem is solved in a reasonable time only for small networks, so heuristic procedures are developed to approximate the optimal solution for large networks. First, a randomized greedy-ascent method is elaborated, taking advantage of a particular data structure to generate feasible solutions quickly. After analyzing the greedy output and determining where the optimal solution is eventually located, improvement procedures are implemented based on a local exchange but applying different long-term diversification principles, and based on tree neighborhood search and random restart. When applied to simulated graphs to determine the reliability and effectiveness of the proposed method, it accurately reproduces the clustering characteristics found in real networks. Finally, it is applied to two real networks, and comparing the results to those from two well-known community-detection procedures confirms that this index complements the other methods well.

Suggested Citation

  • Alessandro Avellone & Stefano Benati & Rosanna Grassi & Giorgio Rizzini, 2024. "On finding the community with maximum persistence probability," 4OR, Springer, vol. 22(4), pages 435-463, December.
  • Handle: RePEc:spr:aqjoor:v:22:y:2024:i:4:d:10.1007_s10288-023-00559-z
    DOI: 10.1007/s10288-023-00559-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-023-00559-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-023-00559-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    2. Kim, Jongeun & Veremyev, Alexander & Boginski, Vladimir & Prokopyev, Oleg A., 2020. "On the maximum small-world subgraph problem," European Journal of Operational Research, Elsevier, vol. 280(3), pages 818-831.
    3. Foad Mahdavi Pajouh & Zhuqi Miao & Balabhaskar Balasundaram, 2014. "A branch-and-bound approach for maximum quasi-cliques," Annals of Operations Research, Springer, vol. 216(1), pages 145-161, May.
    4. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    5. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    6. Dušan Džamić & Daniel Aloise & Nenad Mladenović, 2019. "Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization," Annals of Operations Research, Springer, vol. 272(1), pages 273-287, January.
    7. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    8. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    9. Zhou, Qing & Benlic, Una & Wu, Qinghua, 2020. "An opposition-based memetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 63-83.
    10. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    2. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    3. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    4. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    5. Niels Grüttemeier & Philipp Heinrich Keßler & Christian Komusiewicz & Frank Sommer, 2024. "Efficient branch-and-bound algorithms for finding triangle-constrained 2-clubs," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-27, October.
    6. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    7. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    8. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    9. Zhou, Qing & Benlic, Una & Wu, Qinghua, 2020. "An opposition-based memetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 63-83.
    10. Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
    11. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    12. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    13. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques," Working Papers 1723, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    15. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques," Working Papers 1722, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    17. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    18. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    19. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    20. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2021. "A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1070-1090, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:22:y:2024:i:4:d:10.1007_s10288-023-00559-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.