IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y3i2020p763-778.html
   My bibliography  Save this article

An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph

Author

Listed:
  • Zhuqi Miao

    (Center for Health Systems Innovation, Oklahoma State University, Stillwater, Oklahoma 74078)

  • Balabhaskar Balasundaram

    (School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078)

Abstract

A γ -quasi-clique in a simple undirected graph refers to a subset of vertices that induces a subgraph with edge density at least γ. When γ equals one, this definition corresponds to a classical clique. When γ is less than one, it relaxes the requirement of all possible edges by the clique definition. Quasi-clique detection has been used in graph-based data mining to find dense clusters, especially in large-scale error-prone data sets in which the clique model can be overly restrictive. The maximum γ -quasi-clique problem , seeking a γ-quasi-clique of maximum cardinality in the given graph, can be formulated as an optimization problem with a linear objective function and a single quadratic constraint in binary variables. This article investigates the Lagrangian dual of this formulation and develops an upper-bounding technique using the geometry of ellipsoids to bound the Lagrangian dual. The tightness of the upper bound is compared with those obtained from multiple mixed-integer programming formulations of the problem via experiments on benchmark instances.

Suggested Citation

  • Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
  • Handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:763-778
    DOI: 10.1287/ijoc.2019.0922
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0922
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    2. Alexander Veremyev & Oleg A. Prokopyev & Sergiy Butenko & Eduardo L. Pasiliao, 2016. "Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs," Computational Optimization and Applications, Springer, vol. 64(1), pages 177-214, May.
    3. Foad Mahdavi Pajouh & Zhuqi Miao & Balabhaskar Balasundaram, 2014. "A branch-and-bound approach for maximum quasi-cliques," Annals of Operations Research, Springer, vol. 216(1), pages 145-161, May.
    4. Butenko, S. & Wilhelm, W.E., 2006. "Clique-detection models in computational biochemistry and genomics," European Journal of Operational Research, Elsevier, vol. 173(1), pages 1-17, August.
    5. Saban, Daniela & Bonomo, Flavia & Stier-Moses, Nicolás E., 2010. "Analysis and models of bilateral investment treaties using a social networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3661-3673.
    6. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    7. Pinto, Bruno Q. & Ribeiro, Celso C. & Rosseti, Isabel & Plastino, Alexandre, 2018. "A biased random-key genetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 849-865.
    8. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    9. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    10. R. Luce, 1950. "Connectivity and generalized cliques in sociometric group structure," Psychometrika, Springer;The Psychometric Society, vol. 15(2), pages 169-190, June.
    11. D. Li & X. Sun & C. Liu, 2012. "An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach," Journal of Global Optimization, Springer, vol. 52(4), pages 797-829, April.
    12. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Veremyev & Oleg A. Prokopyev & Sergiy Butenko & Eduardo L. Pasiliao, 2016. "Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs," Computational Optimization and Applications, Springer, vol. 64(1), pages 177-214, May.
    2. Zhou, Qing & Benlic, Una & Wu, Qinghua, 2020. "An opposition-based memetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 63-83.
    3. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    4. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    5. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    6. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    7. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    8. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    9. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    10. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    11. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    12. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    13. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    14. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    15. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    16. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    17. Yuichi Asahiro & Tomohiro Kubo & Eiji Miyano, 2019. "Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 143-161, October.
    18. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    19. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    20. Foad Mahdavi Pajouh & Zhuqi Miao & Balabhaskar Balasundaram, 2014. "A branch-and-bound approach for maximum quasi-cliques," Annals of Operations Research, Springer, vol. 216(1), pages 145-161, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:763-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.