IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008031.html
   My bibliography  Save this article

Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices

Author

Listed:
  • Joe Hilton
  • Matt J Keeling

Abstract

The 2019-2020 pandemic of atypical pneumonia (COVID-19) caused by the virus SARS-CoV-2 has spread globally and has the potential to infect large numbers of people in every country. Estimating the country-specific basic reproductive ratio is a vital first step in public-health planning. The basic reproductive ratio (R0) is determined by both the nature of pathogen and the network of human contacts through which the disease can spread, which is itself dependent on population age structure and household composition. Here we introduce a transmission model combining age-stratified contact frequencies with age-dependent susceptibility, probability of clinical symptoms, and transmission from asymptomatic (or mild) cases, which we use to estimate the country-specific basic reproductive ratio of COVID-19 for 152 countries. Using early outbreak data from China and a synthetic contact matrix, we estimate an age-stratified transmission structure which can then be extrapolated to 151 other countries for which synthetic contact matrices also exist. This defines a set of country-specific transmission structures from which we can calculate the basic reproductive ratio for each country. Our predicted R0 is critically sensitive to the intensity of transmission from asymptomatic cases; with low asymptomatic transmission the highest values are predicted across Eastern Europe and Japan and the lowest across Africa, Central America and South-Western Asia. This pattern is largely driven by the ratio of children to older adults in each country and the observed propensity of clinical cases in the elderly. If asymptomatic cases have comparable transmission to detected cases, the pattern is reversed. Our results demonstrate the importance of age-specific heterogeneities going beyond contact structure to the spread of COVID-19. These heterogeneities give COVID-19 the capacity to spread particularly quickly in countries with older populations, and that intensive control measures are likely to be necessary to impede its progress in these countries.Author summary: Over 100 countries have reported laboratory-confirmed cases of atypical pneumonia caused by 2019 novel coronavirus (COVID-19). Cases are largely reported in older age groups, suggesting a strong age-dependent component to either transmission or the probability of developing symptoms and thus being detected. We introduce a mathematical model for COVID-19 transmission in which contact behaviour, susceptibility, detection probability, and transmission from undetected cases all vary with age. We fit our model to epidemiological data from the outbreak in China for the special case where asymptomatic transmission is negligible, and compare it to a null model where only contact behaviour varies with age. Our fitted model suggests that contacts involving older individuals are particularly likely to generate new detected cases, intensifying the spread of infection in countries with older populations. We estimate the basic reproductive ratio (a measure of a pathogen’s capacity for spread) of COVID-19 in 152 countries under both models, and find that estimates of the basic reproductive ratio are highly dependent on the assumed underlying transmission structure; our more complex model predicts higher values in Japan and much of Europe and lower values in much of Africa, in comparison to the contact frequency-based model where this pattern is reversed.

Suggested Citation

  • Joe Hilton & Matt J Keeling, 2020. "Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-10, July.
  • Handle: RePEc:plo:pcbi00:1008031
    DOI: 10.1371/journal.pcbi.1008031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008031
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    2. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boucekkine, Raouf & Chakraborty, Shankha & Goenka, Aditya & Liu, Lin, 2024. "Economic epidemiological modelling: A progress report," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    2. Rachid Laajaj & Camilo De Los Rios & Ignacio Sarmiento-Barbieri & Danilo Aristizabal & Eduardo Behrentz & Raquel Bernal, 2021. "SARS-CoV-2 spread, detection, and dynamics in a megacity in Latin America," Working Papers 78, Red Nacional de Investigadores en Economía (RedNIE).
    3. Rachid Laajaj & Duncan Webb & Danilo Aristizabal & Eduardo Behrentz & Raquel Bernal & Giancarlo Buitrago & Zulma Cucunubá & Fernando de la Hoz, 2021. "Understanding how socioeconomic inequalities drive inequalities in SARS-CoV-2 infections," Documentos CEDE 19241, Universidad de los Andes, Facultad de Economía, CEDE.
    4. Ritabrata Dutta & Susana N Gomes & Dante Kalise & Lorenzo Pacchiardi, 2021. "Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-25, August.
    5. Jude Dzevela Kong & Edward W Tekwa & Sarah A Gignoux-Wolfsohn, 2021. "Social, economic, and environmental factors influencing the basic reproduction number of COVID-19 across countries," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    6. Alessandro Maria Selvitella & Kathleen Lois Foster, 2020. "Societal and economic factors associated with COVID-19 indicate that developing countries could suffer the most," Technium Social Sciences Journal, Technium Science, vol. 10(1), pages 637-644, August.
    7. Isabella Locatelli & Bastien Trächsel & Valentin Rousson, 2021. "Estimating the basic reproduction number for COVID-19 in Western Europe," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-9, March.
    8. Khalid A. Kheirallah & Belal Alsinglawi & Abdallah Alzoubi & Motasem N. Saidan & Omar Mubin & Mohammed S. Alorjani & Fawaz Mzayek, 2020. "The Effect of Strict State Measures on the Epidemiologic Curve of COVID-19 Infection in the Context of a Developing Country: A Simulation from Jordan," IJERPH, MDPI, vol. 17(18), pages 1-11, September.
    9. Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    10. Tri Nguyen-Huu & Pierre Auger & Ali Moussaoui, 2023. "On Incidence-Dependent Management Strategies against an SEIRS Epidemic: Extinction of the Epidemic Using Allee Effect," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    11. Simón A. Rella & Yuliya A. Kulikova & Emmanouil T. Dermitzakis & Fyodor A. Kondrashov, 2021. "Rates of SARS-COV-2 transmission and vaccination impact the fate of vaccine-resistant strains," Working Papers 2129, Banco de España.
    12. Jonathan Cook & Noah Newberger & Sami Smalling, 2024. "COVID vaccination and social norms," Contemporary Economic Policy, Western Economic Association International, vol. 42(4), pages 660-682, October.
    13. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    14. Agarwal,Ruchir & Reed,Tristan, 2021. "How to End the COVID-19 Pandemic by March 2022," Policy Research Working Paper Series 9632, The World Bank.
    15. Tsippy Lotan & David Shinar, 2021. "Sustainable Public Safety and the Case of Two Epidemics: COVID-19 and Traffic Crashes. Can We Extrapolate from One to the Other?," Sustainability, MDPI, vol. 13(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.
    2. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    3. Casey B. Mulligan, 2021. "The incidence and magnitude of the health costs of in-person schooling during the COVID-19 pandemic," Public Choice, Springer, vol. 188(3), pages 303-332, September.
    4. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    5. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    8. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    9. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    10. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    11. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    12. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    14. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Lewandowski, Piotr, 2020. "Occupational Exposure to Contagion and the Spread of COVID-19 in Europe," IZA Discussion Papers 13227, Institute of Labor Economics (IZA).
    16. Ruenzi, Stefan & Maeckle, Kai, 2023. "Friends with Drugs: The Role of Social Networks in the Opioid Epidemic," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277574, Verein für Socialpolitik / German Economic Association.
    17. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    18. Mohamed Ismail, 2023. "The Effect of Social Contacts on the Uptake of Health Innovations among Older Ethnic Minorities in the UK: A Mixed Methods Study," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    19. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    20. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.