IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007513.html
   My bibliography  Save this article

A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative

Author

Listed:
  • Nie, Shiqian
  • Lei, Xiaochun

Abstract

The coronavirus disease 2019 variants (COVID-19 variants) pandemic is still wreaking havoc across the world; and has a key impact on our lives, but the dynamic evolution of COVID-19 variants is still obscure. Hausdorff fractal calculus provides a powerful method for fractal dynamics modeling in computational biology. This paper studies the applicability of Hausdorff fractal differential equations (HDE) in dynamics modeling and the alleviation of coronavirus for the first time. Scholars have generated amounts of instructive research about the COVID-19 variants, and lack of time dependence. This paper will develop a time-dependent Hausdorff derivative model which focuses on the modeling, applications, and data analysis for the COVID-19 variants pandemic spreading in the world. The model results show that the transmission, infection, and recovery dynamics follow the integral-order Susceptible, Exposed, Infectious, and Recovered (SEIR) model, and the evolution of the death toll follows the time HDE. In this paper, a modified SEIR model is proposed, denoted by Hausdorff fractal derivative SEIR (HSEIR) model. Then we apply the HSEIR model to predict the evolution of COVID-19 variants in Brazil, China, Germany, India, Italy, Japan, and South Africa. The model successfully captured the process of developing COVID-19 variants, which provides a theoretical basis for understanding the trend of the epidemic.

Suggested Citation

  • Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007513
    DOI: 10.1016/j.physa.2023.129196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007513
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Mingtao & Cui, Jin & Zhang, Juan & Pei, Xin & Sun, Guiquan, 2022. "Transmission characteristic and dynamic analysis of COVID-19 on contact network with Tianjin city in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Abbasi, M. & Bollini, A.L. & Castillo, J.L.B. & Deppman, A. & Guidio, J.P. & Matuoka, P.T. & Meirelles, A.D. & Policarpo, J.M.P. & Ramos, A.A.G.F. & Simionatto, S. & Varona, A.R.P. & Andrade-II, E. & , 2020. "Fractal signatures of the COVID-19 spread," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    4. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Joe Hilton & Matt J Keeling, 2020. "Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Rachid Laajaj & Camilo De Los Rios & Ignacio Sarmiento-Barbieri & Danilo Aristizabal & Eduardo Behrentz & Raquel Berna & Giancarlo Buitrago & Zulma Cucunubá, 2021. "SARS-CoV-2 spread, detection, and dynamics in a megacity in Latin America," Documentos CEDE 19152, Universidad de los Andes, Facultad de Economía, CEDE.
    3. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    4. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Robert S. Pindyck, 2020. "COVID-19 and the Welfare Effects of Reducing Contagion," NBER Working Papers 27121, National Bureau of Economic Research, Inc.
    6. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    7. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    8. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    9. Facundo Piguillem & Liyan Shi, 2022. "Optimal Covid-19 Quarantine and Testing Policies," The Economic Journal, Royal Economic Society, vol. 132(647), pages 2534-2562.
    10. Rachid Laajaj & Duncan Webb & Danilo Aristizabal & Eduardo Behrentz & Raquel Bernal & Giancarlo Buitrago & Zulma Cucunubá & Fernando de la Hoz, 2021. "Understanding how socioeconomic inequalities drive inequalities in SARS-CoV-2 infections," Documentos CEDE 19241, Universidad de los Andes, Facultad de Economía, CEDE.
    11. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    12. Toulis, Panos, 2021. "Estimation of Covid-19 prevalence from serology tests: A partial identification approach," Journal of Econometrics, Elsevier, vol. 220(1), pages 193-213.
    13. Junseok Kim, 2024. "Influence of Fractional Order on the Behavior of a Normalized Time-Fractional SIR Model," Mathematics, MDPI, vol. 12(19), pages 1-9, October.
    14. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    15. Xiaowei Chen & Wing Fung Chong & Runhuan Feng & Linfeng Zhang, 2020. "Pandemic risk management: resources contingency planning and allocation," Papers 2012.03200, arXiv.org.
    16. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
    18. Simón A. Rella & Yuliya A. Kulikova & Emmanouil T. Dermitzakis & Fyodor A. Kondrashov, 2021. "Rates of SARS-COV-2 transmission and vaccination impact the fate of vaccine-resistant strains," Working Papers 2129, Banco de España.
    19. Malkov, Egor, 2020. "Simulation of coronavirus disease 2019 (COVID-19) scenarios with possibility of reinfection," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Panos Toulis, 2020. "Estimation of COVID-19 Prevalence from Serology Tests: A Partial Identification Approach," Working Papers 2020-54_Revised, Becker Friedman Institute for Research In Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.