IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009236.html
   My bibliography  Save this article

Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic

Author

Listed:
  • Ritabrata Dutta
  • Susana N Gomes
  • Dante Kalise
  • Lorenzo Pacchiardi

Abstract

A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France.Author summary: In many countries, the COVID-19 pandemic has revealed a gap between public policy making and the use of advanced technological tools to inform such a process. In the big data era, decisions concerning the implementation of quarantines and travel restrictions are still being taken based on incomplete public health data, despite the myriad of information our society provides in real time, such as mobility data, commuting network structures, and financial patterns, to name a few. To advance towards an effective data-driven, quantitative policy making, we propose a computational framework where a predictive epidemiological model is fitted by feeding both public health and Google mobility data. The resulting model is then used as a basis for designing mobility reduction strategies which are optimised taking into account both the healthcare system capacity, and the economic impact of an extended lockdown. For the COVID-19 pandemic in England and France, we show that it is possible to design lockdown policies allowing a partial return to workplaces and schools, while maintaining the epidemic under control.

Suggested Citation

  • Ritabrata Dutta & Susana N Gomes & Dante Kalise & Lorenzo Pacchiardi, 2021. "Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-25, August.
  • Handle: RePEc:plo:pcbi00:1009236
    DOI: 10.1371/journal.pcbi.1009236
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009236
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009236&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joe Hilton & Matt J Keeling, 2020. "Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachid Laajaj & Camilo De Los Rios & Ignacio Sarmiento-Barbieri & Danilo Aristizabal & Eduardo Behrentz & Raquel Berna & Giancarlo Buitrago & Zulma Cucunubá, 2021. "SARS-CoV-2 spread, detection, and dynamics in a megacity in Latin America," Documentos CEDE 19152, Universidad de los Andes, Facultad de Economía, CEDE.
    2. Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    3. Rachid Laajaj & Duncan Webb & Danilo Aristizabal & Eduardo Behrentz & Raquel Bernal & Giancarlo Buitrago & Zulma Cucunubá & Fernando de la Hoz, 2021. "Understanding how socioeconomic inequalities drive inequalities in SARS-CoV-2 infections," Documentos CEDE 19241, Universidad de los Andes, Facultad de Economía, CEDE.
    4. Simón A. Rella & Yuliya A. Kulikova & Emmanouil T. Dermitzakis & Fyodor A. Kondrashov, 2021. "Rates of SARS-COV-2 transmission and vaccination impact the fate of vaccine-resistant strains," Working Papers 2129, Banco de España.
    5. Khalid A. Kheirallah & Belal Alsinglawi & Abdallah Alzoubi & Motasem N. Saidan & Omar Mubin & Mohammed S. Alorjani & Fawaz Mzayek, 2020. "The Effect of Strict State Measures on the Epidemiologic Curve of COVID-19 Infection in the Context of a Developing Country: A Simulation from Jordan," IJERPH, MDPI, vol. 17(18), pages 1-11, September.
    6. Tri Nguyen-Huu & Pierre Auger & Ali Moussaoui, 2023. "On Incidence-Dependent Management Strategies against an SEIRS Epidemic: Extinction of the Epidemic Using Allee Effect," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    7. Jude Dzevela Kong & Edward W Tekwa & Sarah A Gignoux-Wolfsohn, 2021. "Social, economic, and environmental factors influencing the basic reproduction number of COVID-19 across countries," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    8. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    9. Agarwal,Ruchir & Reed,Tristan, 2021. "How to End the COVID-19 Pandemic by March 2022," Policy Research Working Paper Series 9632, The World Bank.
    10. Isabella Locatelli & Bastien Trächsel & Valentin Rousson, 2021. "Estimating the basic reproduction number for COVID-19 in Western Europe," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-9, March.
    11. Tsippy Lotan & David Shinar, 2021. "Sustainable Public Safety and the Case of Two Epidemics: COVID-19 and Traffic Crashes. Can We Extrapolate from One to the Other?," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    12. Alessandro Maria Selvitella & Kathleen Lois Foster, 2020. "Societal and economic factors associated with COVID-19 indicate that developing countries could suffer the most," Technium Social Sciences Journal, Technium Science, vol. 10(1), pages 637-644, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.