IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006917.html
   My bibliography  Save this article

The statistics of epidemic transitions

Author

Listed:
  • John M Drake
  • Tobias S Brett
  • Shiyang Chen
  • Bogdan I Epureanu
  • Matthew J Ferrari
  • Éric Marty
  • Paige B Miller
  • Eamon B O’Dea
  • Suzanne M O’Regan
  • Andrew W Park
  • Pejman Rohani

Abstract

Emerging and re-emerging pathogens exhibit very complex dynamics, are hard to model and difficult to predict. Their dynamics might appear intractable. However, new statistical approaches—rooted in dynamical systems and the theory of stochastic processes—have yielded insight into the dynamics of emerging and re-emerging pathogens. We argue that these approaches may lead to new methods for predicting epidemics. This perspective views pathogen emergence and re-emergence as a “critical transition,” and uses the concept of noisy dynamic bifurcation to understand the relationship between the system observables and the distance to this transition. Because the system dynamics exhibit characteristic fluctuations in response to perturbations for a system in the vicinity of a critical point, we propose this information may be harnessed to develop early warning signals. Specifically, the motion of perturbations slows as the system approaches the transition.

Suggested Citation

  • John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
  • Handle: RePEc:plo:pcbi00:1006917
    DOI: 10.1371/journal.pcbi.1006917
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006917
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006917&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    2. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    3. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    4. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    5. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    6. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    7. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    8. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    9. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    10. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    2. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    3. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    6. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    7. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    8. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    9. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    10. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    11. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    12. Sumedha Gupta & Kosali I. Simon & Coady Wing, 2020. "Mandated and Voluntary Social Distancing During The COVID-19 Epidemic: A Review," NBER Working Papers 28139, National Bureau of Economic Research, Inc.
    13. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    14. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    16. Hui-Yi Yeh & Kou-Huang Chen & Kow-Tong Chen, 2018. "Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept," IJERPH, MDPI, vol. 15(6), pages 1-3, June.
    17. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    18. Wolfgang Brozek & Christof Falkenberg, 2021. "Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    19. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Leach, Melissa & MacGregor, Hayley & Scoones, Ian & Wilkinson, Annie, 2021. "Post-pandemic transformations: How and why COVID-19 requires us to rethink development," World Development, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.