IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0045113.html
   My bibliography  Save this article

Representative Contact Diaries for Modeling the Spread of Infectious Diseases in Taiwan

Author

Listed:
  • Yang-chih Fu
  • Da-Wei Wang
  • Jen-Hsiang Chuang

Abstract

Recent studies of infectious diseases have attempted to construct more realistic parameters of interpersonal contact patterns from diary-approach surveys. To ensure that such diary-based contact patterns provide accurate baseline data for policy implementation in densely populated Taiwan, we collected contact diaries from a national sample, using 3-stage systematic probability sampling and rigorous in-person interviews. A representative sample of 1,943 contact diaries recorded a total of 24,265 wide-range, face-to-face interpersonal contacts during a 24-hour period. Nearly 70% of the contacts occurred outside of respondents' households. The most active age group was schoolchildren (ages 5–14), who averaged around 16–18 daily contacts, about 2–3 times as many as the least active age groups. We show how such parameters of contact patterns help modify a sophisticated national simulation system that has been used for years to model the spread of pandemic diseases in Taiwan. Based on such actual and representative data that enable researchers to infer findings to the whole population, our analyses aim to facilitate implementing more appropriate and effective strategies for controlling an emerging or pandemic disease infection.

Suggested Citation

  • Yang-chih Fu & Da-Wei Wang & Jen-Hsiang Chuang, 2012. "Representative Contact Diaries for Modeling the Spread of Infectious Diseases in Taiwan," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0045113
    DOI: 10.1371/journal.pone.0045113
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045113
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045113&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0045113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nele Goeyvaerts & Niel Hens & Benson Ogunjimi & Marc Aerts & Ziv Shkedy & Pierre Van Damme & Philippe Beutels, 2010. "Estimating infectious disease parameters from data on social contacts and serological status," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 255-277, March.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Chang, H.-J. & Huang, N. & Lee, C.-H. & Hsu, Y.-J. & Hsieh, C.-J. & Chou, Y.-J., 2004. "The Impact of the SARS Epidemic on the Utilization of Medical Services: SARS and the Fear of SARS," American Journal of Public Health, American Public Health Association, vol. 94(4), pages 562-564.
    4. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    5. Meng-Tsung Tsai & Tsurng-Chen Chern & Jen-Hsiang Chuang & Chih-Wen Hsueh & Hsu-Sung Kuo & Churn-Jung Liau & Steven Riley & Bing-Jie Shen & Chih-Hao Shen & Da-Wei Wang & Tsan-Sheng Hsu, 2010. "Efficient Simulation of the Spatial Transmission Dynamics of Influenza," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-8, November.
    6. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    7. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    2. Kirsty J Bolton & James M McCaw & Kristian Forbes & Paula Nathan & Garry Robins & Philippa Pattison & Terry Nolan & Jodie McVernon, 2012. "Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    3. Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
    4. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    5. Ken T D Eames & Natasha L Tilston & Ellen Brooks-Pollock & W John Edmunds, 2012. "Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-8, March.
    6. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    7. Adam J Kucharski & Andrew J K Conlan & Ken T D Eames, 2015. "School’s Out: Seasonal Variation in the Movement Patterns of School Children," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    8. Brotherhood, Luiz & Kircher, Philipp & Santos, Cezar & Tertilt, Michèle, 2023. "Optimal Age-based Policies for Pandemics: An Economic Analysis of Covid-19 and Beyond," IDB Publications (Working Papers) 13295, Inter-American Development Bank.
    9. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    10. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    11. Janiak, Alexandre & Machado, Caio & Turén, Javier, 2021. "Covid-19 contagion, economic activity and business reopening protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 264-284.
    12. Brotherhood, Luiz & Kircher, Philipp & Santos, Cezar & Tertilt, Michele, 2024. "Optimal Age-based Policies for Pandemics: An Economic Analysis of Covid-19 and Beyond," LIDAM Discussion Papers CORE 2024012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    14. Carlos G Grijalva & Nele Goeyvaerts & Hector Verastegui & Kathryn M Edwards & Ana I Gil & Claudio F Lanata & Niel Hens & for the RESPIRA PERU project, 2015. "A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    15. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    16. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    17. Audrey McCombs & Claus Kadelka, 2020. "A model-based evaluation of the efficacy of COVID-19 social distancing, testing and hospital triage policies," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-18, October.
    18. Mart L Stein & Jim E van Steenbergen & Charnchudhi Chanyasanha & Mathuros Tipayamongkholgul & Vincent Buskens & Peter G M van der Heijden & Wasamon Sabaiwan & Linus Bengtsson & Xin Lu & Anna E Thorson, 2014. "Online Respondent-Driven Sampling for Studying Contact Patterns Relevant for the Spread of Close-Contact Pathogens: A Pilot Study in Thailand," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    19. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    20. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0045113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.