IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006446.html
   My bibliography  Save this article

Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity

Author

Listed:
  • Stefano Recanatesi
  • Gabriel Koch Ocker
  • Michael A Buice
  • Eric Shea-Brown

Abstract

The dimensionality of a network’s collective activity is of increasing interest in neuroscience. This is because dimensionality provides a compact measure of how coordinated network-wide activity is, in terms of the number of modes (or degrees of freedom) that it can independently explore. A low number of modes suggests a compressed low dimensional neural code and reveals interpretable dynamics [1], while findings of high dimension may suggest flexible computations [2, 3]. Here, we address the fundamental question of how dimensionality is related to connectivity, in both autonomous and stimulus-driven networks. Working with a simple spiking network model, we derive three main findings. First, the dimensionality of global activity patterns can be strongly, and systematically, regulated by local connectivity structures. Second, the dimensionality is a better indicator than average correlations in determining how constrained neural activity is. Third, stimulus evoked neural activity interacts systematically with neural connectivity patterns, leading to network responses of either greater or lesser dimensionality than the stimulus.Author summary: New recording technologies are producing an amazing explosion of data on neural activity. These data reveal the simultaneous activity of hundreds or even thousands of neurons. In principle, the activity of these neurons could explore a vast space of possible patterns. This is what is meant by high-dimensional activity: the number of degrees of freedom (or “modes”) of multineuron activity is large, perhaps as large as the number of neurons themselves. In practice, estimates of dimensionality differ strongly from case to case, and do so in interesting ways across experiments, species, and brain areas. The outcome is important for much more than just accurately describing neural activity: findings of low dimension have been proposed to allow data compression, denoising, and easily readable neural codes, while findings of high dimension have been proposed as signatures of powerful and general computations. So what is it about a neural circuit that leads to one case or the other? Here, we derive a set of principles that inform how the connectivity of a spiking neural network determines the dimensionality of the activity that it produces. These show that, in some cases, highly localized features of connectivity have strong control over a network’s global dimensionality—an interesting finding in the context of, e.g., learning rules that occur locally. We also show how dimension can be much different than first meets the eye with typical “pairwise” measurements, and how stimuli and intrinsic connectivity interact in shaping the overall dimension of a network’s response.

Suggested Citation

  • Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
  • Handle: RePEc:plo:pcbi00:1006446
    DOI: 10.1371/journal.pcbi.1006446
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006446
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006446&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francesca Mastrogiuseppe & Srdjan Ostojic, 2017. "Intrinsically-generated fluctuating activity in excitatory-inhibitory networks," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-40, April.
    2. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    3. Wei-Chung Allen Lee & Vincent Bonin & Michael Reed & Brett J. Graham & Greg Hood & Katie Glattfelder & R. Clay Reid, 2016. "Anatomy and function of an excitatory network in the visual cortex," Nature, Nature, vol. 532(7599), pages 370-374, April.
    4. Jonathan W. Pillow & Jonathon Shlens & Liam Paninski & Alexander Sher & Alan M. Litke & E. J. Chichilnisky & Eero P. Simoncelli, 2008. "Spatio-temporal correlations and visual signalling in a complete neuronal population," Nature, Nature, vol. 454(7207), pages 995-999, August.
    5. Kevin L. Briggman & Moritz Helmstaedter & Winfried Denk, 2011. "Wiring specificity in the direction-selectivity circuit of the retina," Nature, Nature, vol. 471(7337), pages 183-188, March.
    6. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    7. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    8. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    9. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    10. Yu Hu & Joel Zylberberg & Eric Shea-Brown, 2014. "The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-22, February.
    11. N. Alex Cayco-Gajic & Claudia Clopath & R. Angus Silver, 2017. "Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    12. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    13. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    14. Davi D. Bock & Wei-Chung Allen Lee & Aaron M. Kerlin & Mark L. Andermann & Greg Hood & Arthur W. Wetzel & Sergey Yurgenson & Edward R. Soucy & Hyon Suk Kim & R. Clay Reid, 2011. "Network anatomy and in vivo physiology of visual cortical neurons," Nature, Nature, vol. 471(7337), pages 177-182, March.
    15. Spencer L. Smith & Ikuko T. Smith & Tiago Branco & Michael Häusser, 2013. "Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo," Nature, Nature, vol. 503(7474), pages 115-120, November.
    16. Jaime de la Rocha & Brent Doiron & Eric Shea-Brown & Krešimir Josić & Alex Reyes, 2007. "Correlation between neural spike trains increases with firing rate," Nature, Nature, vol. 448(7155), pages 802-806, August.
    17. Lee Cossell & Maria Florencia Iacaruso & Dylan R. Muir & Rachael Houlton & Elie N. Sader & Ho Ko & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2015. "Functional organization of excitatory synaptic strength in primary visual cortex," Nature, Nature, vol. 518(7539), pages 399-403, February.
    18. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    19. Timothy P. Lillicrap & Daniel Cownden & Douglas B. Tweed & Colin J. Akerman, 2016. "Random synaptic feedback weights support error backpropagation for deep learning," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    20. Moritz Helmstaedter & Kevin L. Briggman & Srinivas C. Turaga & Viren Jain & H. Sebastian Seung & Winfried Denk, 2013. "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, Nature, vol. 500(7461), pages 168-174, August.
    21. Tomoko Ohyama & Casey M. Schneider-Mizell & Richard D. Fetter & Javier Valdes Aleman & Romain Franconville & Marta Rivera-Alba & Brett D. Mensh & Kristin M. Branson & Julie H. Simpson & James W. Truma, 2015. "A multilevel multimodal circuit enhances action selection in Drosophila," Nature, Nature, vol. 520(7549), pages 633-639, April.
    22. Editors The, 2007. "From the Editors," Basic Income Studies, De Gruyter, vol. 2(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele N. Insanally & Badr F. Albanna & Jade Toth & Brian DePasquale & Saba Shokat Fadaei & Trisha Gupta & Olivia Lombardi & Kishore Kuchibhotla & Kanaka Rajan & Robert C. Froemke, 2024. "Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    2. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    3. Stojan Jovanović & Stefan Rotter, 2016. "Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-28, June.
    4. Andrea K Barreiro & Cheng Ly, 2017. "When do correlations increase with firing rates in recurrent networks?," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-30, April.
    5. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    6. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    7. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    8. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    9. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    10. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    12. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Zhihao Zheng & Christopher S. Own & Adrian A. Wanner & Randal A. Koene & Eric W. Hammerschmith & William M. Silversmith & Nico Kemnitz & Ran Lu & David W. Tank & H. Sebastian Seung, 2024. "Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    16. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    17. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    19. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    20. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.