IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008128.html
   My bibliography  Save this article

Engineering recurrent neural networks from task-relevant manifolds and dynamics

Author

Listed:
  • Eli Pollock
  • Mehrdad Jazayeri

Abstract

Many cognitive processes involve transformations of distributed representations in neural populations, creating a need for population-level models. Recurrent neural network models fulfill this need, but there are many open questions about how their connectivity gives rise to dynamics that solve a task. Here, we present a method for finding the connectivity of networks for which the dynamics are specified to solve a task in an interpretable way. We apply our method to a working memory task by synthesizing a network that implements a drift-diffusion process over a ring-shaped manifold. We also use our method to demonstrate how inputs can be used to control network dynamics for cognitive flexibility and explore the relationship between representation geometry and network capacity. Our work fits within the broader context of understanding neural computations as dynamics over relatively low-dimensional manifolds formed by correlated patterns of neurons.Author summary: Neurons in the brain form intricate networks that can produce a vast array of activity patterns. To support goal-directed behavior, the brain must adjust the connections between neurons so that network dynamics can perform desirable computations on behaviorally relevant variables. A fundamental goal in computational neuroscience is to provide an understanding of how network connectivity aligns the dynamics in the brain to the dynamics needed to track those variables. Here, we develop a mathematical framework for creating recurrent neural network models that can address this problem. Specifically, we derive a set of linear equations that constrain the connectivity to afford a direct mapping of task-relevant dynamics onto network activity. We demonstrate the utility of this technique by creating and analyzing a set of network models that can perform a simple working memory task. We then extend the approach to show how additional constraints can furnish networks whose dynamics are controlled flexibly by external inputs. Finally, we exploit the flexibility of this technique to explore the robustness and capacity limitations of recurrent networks. This network synthesis method provides a powerful means for generating and validating hypotheses about how task-relevant computations can emerge from network dynamics.

Suggested Citation

  • Eli Pollock & Mehrdad Jazayeri, 2020. "Engineering recurrent neural networks from task-relevant manifolds and dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1008128
    DOI: 10.1371/journal.pcbi.1008128
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008128
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008128&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    2. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    3. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh-an Pham & Aleix Boquet-Pujadas & Sandip Mondal & Michael Unser & George Barbastathis, 2024. "Deep-prior ODEs augment fluorescence imaging with chemical sensors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Yuke Yan & James M. Goodman & Dalton D. Moore & Sara A. Solla & Sliman J. Bensmaia, 2020. "Unexpected complexity of everyday manual behaviors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    5. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Leonhard Waschke & Fabian Kamp & Evi Elzen & Suresh Krishna & Ulman Lindenberger & Ueli Rutishauser & Douglas D. Garrett, 2025. "Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Jean-Paul Noel & Edoardo Balzani & Cristina Savin & Dora E. Angelaki, 2024. "Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Tianwei Wang & Yun Chen & Yiheng Zhang & He Cui, 2024. "Multiplicative joint coding in preparatory activity for reaching sequence in macaque motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Ghislain St-Yves & Emily J. Allen & Yihan Wu & Kendrick Kay & Thomas Naselaris, 2023. "Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    13. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Teppei Matsui & Takayuki Hashimoto & Tomonari Murakami & Masato Uemura & Kohei Kikuta & Toshiki Kato & Kenichi Ohki, 2024. "Orthogonalization of spontaneous and stimulus-driven activity by hierarchical neocortical areal network in primates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. W. Jeffrey Johnston & Stefano Fusi, 2023. "Abstract representations emerge naturally in neural networks trained to perform multiple tasks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Kristjan Kalm & Dennis Norris, 2021. "Sequence learning recodes cortical representations instead of strengthening initial ones," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-34, May.
    20. Hammad F. Khan & Sayan Dutta & Alicia N. Scott & Shulan Xiao & Saumitra Yadav & Xiaoling Chen & Uma K. Aryal & Tamara L. Kinzer-Ursem & Jean-Christophe Rochet & Krishna Jayant, 2024. "Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.