IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005309.html
   My bibliography  Save this article

Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations

Author

Listed:
  • Christian Donner
  • Klaus Obermayer
  • Hideaki Shimazaki

Abstract

The models in statistical physics such as an Ising model offer a convenient way to characterize stationary activity of neural populations. Such stationary activity of neurons may be expected for recordings from in vitro slices or anesthetized animals. However, modeling activity of cortical circuitries of awake animals has been more challenging because both spike-rates and interactions can change according to sensory stimulation, behavior, or an internal state of the brain. Previous approaches modeling the dynamics of neural interactions suffer from computational cost; therefore, its application was limited to only a dozen neurons. Here by introducing multiple analytic approximation methods to a state-space model of neural population activity, we make it possible to estimate dynamic pairwise interactions of up to 60 neurons. More specifically, we applied the pseudolikelihood approximation to the state-space model, and combined it with the Bethe or TAP mean-field approximation to make the sequential Bayesian estimation of the model parameters possible. The large-scale analysis allows us to investigate dynamics of macroscopic properties of neural circuitries underlying stimulus processing and behavior. We show that the model accurately estimates dynamics of network properties such as sparseness, entropy, and heat capacity by simulated data, and demonstrate utilities of these measures by analyzing activity of monkey V4 neurons as well as a simulated balanced network of spiking neurons.Author Summary: Simultaneous analysis of large-scale neural populations is necessary to understand coding principles of neurons because they concertedly process information. Methods of thermodynamics and statistical mechanics are useful to understand collective phenomena of the interacting elements, and they have been successfully used to understand diverse activity of neurons. However, most analysis methods assume stationary data, in which activity rates of neurons and their correlations are constant over time. This assumption is easily violated in the data recorded from awake animals. Neural correlations likely organize dynamically during behavior and cognition, and this may be independent from the modulated activity rates of individual neurons. Recently several methods were proposed to simultaneously estimate dynamics of neural interactions. However, these methods are applicable to up to about 10 neurons. Here by combining multiple analytic approximation methods, we made it possible to estimate time-varying interactions of much larger neural populations. The method allows us to trace dynamic macroscopic properties of neural circuitries such as sparseness, entropy, and sensitivity. Using these statistics, researchers can now quantify to what extent neurons are correlated or de-correlated, and test if neural systems are susceptible within a specific behavioral period.

Suggested Citation

  • Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
  • Handle: RePEc:plo:pcbi00:1005309
    DOI: 10.1371/journal.pcbi.1005309
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005309
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005309&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    2. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    3. Jonathan W. Pillow & Jonathon Shlens & Liam Paninski & Alexander Sher & Alan M. Litke & E. J. Chichilnisky & Eero P. Simoncelli, 2008. "Spatio-temporal correlations and visual signalling in a complete neuronal population," Nature, Nature, vol. 454(7207), pages 995-999, August.
    4. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    5. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    6. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    7. Ifije E. Ohiorhenuan & Ferenc Mechler & Keith P. Purpura & Anita M. Schmid & Qin Hu & Jonathan D. Victor, 2010. "Sparse coding and high-order correlations in fine-scale cortical networks," Nature, Nature, vol. 466(7306), pages 617-621, July.
    8. P. N. Steinmetz & A. Roy & P. J. Fitzgerald & S. S. Hsiao & K. O. Johnson & E. Niebur, 2000. "Attention modulates synchronized neuronal firing in primate somatosensory cortex," Nature, Nature, vol. 404(6774), pages 187-190, March.
    9. Andrew Y. Y. Tan & Yuzhi Chen & Benjamin Scholl & Eyal Seidemann & Nicholas J. Priebe, 2014. "Sensory stimulation shifts visual cortex from synchronous to asynchronous states," Nature, Nature, vol. 509(7499), pages 226-229, May.
    10. James F. A. Poulet & Carl C. H. Petersen, 2008. "Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice," Nature, Nature, vol. 454(7206), pages 881-885, August.
    11. Michael Okun & Nicholas A. Steinmetz & Lee Cossell & M. Florencia Iacaruso & Ho Ko & Péter Barthó & Tirin Moore & Sonja B. Hofer & Thomas D. Mrsic-Flogel & Matteo Carandini & Kenneth D. Harris, 2015. "Diverse coupling of neurons to populations in sensory cortex," Nature, Nature, vol. 521(7553), pages 511-515, May.
    12. Jaime de la Rocha & Brent Doiron & Eric Shea-Brown & Krešimir Josić & Alex Reyes, 2007. "Correlation between neural spike trains increases with firing rate," Nature, Nature, vol. 448(7155), pages 802-806, August.
    13. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    14. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    15. Tal Kenet & Dmitri Bibitchkov & Misha Tsodyks & Amiram Grinvald & Amos Arieli, 2003. "Spontaneously emerging cortical representations of visual attributes," Nature, Nature, vol. 425(6961), pages 954-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    2. Miguel Aguilera & Masanao Igarashi & Hideaki Shimazaki, 2023. "Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    2. Stojan Jovanović & Stefan Rotter, 2016. "Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-28, June.
    3. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    4. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    5. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    6. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    7. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    8. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    9. Montangie, Lisandro & Montani, Fernando, 2015. "Quantifying higher-order correlations in a neuronal pool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 388-400.
    10. Montani, Fernando & Phoka, Elena & Portesi, Mariela & Schultz, Simon R., 2013. "Statistical modelling of higher-order correlations in pools of neural activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3066-3086.
    11. Porta Mana, PierGianLuca & Rostami, Vahid & Torre, Emiliano & Roudi, Yasser, 2018. "Maximum-entropy and representative samples of neuronal activity: a dilemma," OSF Preprints uz29n, Center for Open Science.
    12. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    13. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    14. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    16. Montangie, Lisandro & Montani, Fernando, 2017. "Higher-order correlations in common input shapes the output spiking activity of a neural population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 845-861.
    17. Cofré, Rodrigo & Cessac, Bruno, 2013. "Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 13-31.
    18. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    19. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    20. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.