IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004031.html
   My bibliography  Save this article

The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences

Author

Listed:
  • Michael Fauth
  • Florentin Wörgötter
  • Christian Tetzlaff

Abstract

Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses.In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have.We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems.Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities.Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes.These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms.Author Summary: The connectivity between neurons is modified by different mechanisms. On a time scale of minutes to hours one finds synaptic plasticity, whereas mechanisms for structural changes at axons or dendrites may take days. One main factor determining structural changes is the weight of a connection, which, in turn, is adapted by synaptic plasticity. Both mechanisms, synaptic and structural plasticity, are influenced and determined by the activity pattern in the network. Hence, it is important to understand how activity and the different plasticity mechanisms influence each other. Especially how activity influences rewiring in adult networks is still an open question.

Suggested Citation

  • Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
  • Handle: RePEc:plo:pcbi00:1004031
    DOI: 10.1371/journal.pcbi.1004031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004031
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masanori Matsuzaki & Naoki Honkura & Graham C. R. Ellis-Davies & Haruo Kasai, 2004. "Structural basis of long-term potentiation in single dendritic spines," Nature, Nature, vol. 429(6993), pages 761-766, June.
    2. D. B. Chklovskii & B. W. Mel & K. Svoboda, 2004. "Cortical rewiring and information storage," Nature, Nature, vol. 431(7010), pages 782-788, October.
    3. Tonghui Xu & Xinzhu Yu & Andrew J. Perlik & Willie F. Tobin & Jonathan A. Zweig & Kelly Tennant & Theresa Jones & Yi Zuo, 2009. "Rapid formation and selective stabilization of synapses for enduring motor memories," Nature, Nature, vol. 462(7275), pages 915-919, December.
    4. Florian Engert & Tobias Bonhoeffer, 1999. "Dendritic spine changes associated with hippocampal long-term synaptic plasticity," Nature, Nature, vol. 399(6731), pages 66-70, May.
    5. Jaime Grutzendler & Narayanan Kasthuri & Wen-Biao Gan, 2002. "Long-term dendritic spine stability in the adult cortex," Nature, Nature, vol. 420(6917), pages 812-816, December.
    6. Guang Yang & Feng Pan & Wen-Biao Gan, 2009. "Stably maintained dendritic spines are associated with lifelong memories," Nature, Nature, vol. 462(7275), pages 920-924, December.
    7. Hyung-Bae Kwon & Bernardo L. Sabatini, 2011. "Glutamate induces de novo growth of functional spines in developing cortex," Nature, Nature, vol. 474(7349), pages 100-104, June.
    8. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    9. Sonja B. Hofer & Thomas D. Mrsic-Flogel & Tobias Bonhoeffer & Mark Hübener, 2009. "Experience leaves a lasting structural trace in cortical circuits," Nature, Nature, vol. 457(7227), pages 313-317, January.
    10. Joshua T. Trachtenberg & Brian E. Chen & Graham W. Knott & Guoping Feng & Joshua R. Sanes & Egbert Welker & Karel Svoboda, 2002. "Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex," Nature, Nature, vol. 420(6917), pages 788-794, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Protachevicz, Paulo R. & Batista, Antonio M. & Caldas, Iberê L. & Baptista, Murilo S., 2024. "Analytical solutions for the short-term plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    2. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    4. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    5. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Scott R. Burlingham & Nicole F. Wong & Lindsay Peterkin & Lily Lubow & Carolina Dos Santos Passos & Orion Benner & Michael Ghebrial & Thomas P. Cast & Matthew A. Xu-Friedman & Thomas C. Südhof & Soham, 2022. "Induction of synapse formation by de novo neurotransmitter synthesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Johannes Holz & Hannah Piosczyk & Nina Landmann & Bernd Feige & Kai Spiegelhalder & Dieter Riemann & Christoph Nissen & Ulrich Voderholzer, 2012. "The Timing of Learning before Night-Time Sleep Differentially Affects Declarative and Procedural Long-Term Memory Consolidation in Adolescents," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    12. María del Carmen Rodríguez-Martínez & Alba De la Plana Maestre & Juan Antonio Armenta-Peinado & Miguel Ángel Barbancho & Natalia García-Casares, 2021. "Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    13. Laura Hermans & Murat Kaynak & Jonas Braun & Victor Lobato Ríos & Chin-Lin Chen & Adam Friedberg & Semih Günel & Florian Aymanns & Mahmut Selman Sakar & Pavan Ramdya, 2022. "Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Eleni Mitsea & Athanasios Drigas & Charalabos Skianis, 2022. "ICTs and Speed Learning in Special Education: High-Consciousness Training Strategies for High-Capacity Learners through Metacognition Lens," Technium Social Sciences Journal, Technium Science, vol. 27(1), pages 230-252, January.
    15. Fausto-Sterling, Anne & Coll, Cynthia Garcia & Lamarre, Meaghan, 2012. "Sexing the baby: Part 2 applying dynamic systems theory to the emergences of sex-related differences in infants and toddlers," Social Science & Medicine, Elsevier, vol. 74(11), pages 1693-1702.
    16. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    17. Yang Li & Xuewei Chao, 2020. "ANN-Based Continual Classification in Agriculture," Agriculture, MDPI, vol. 10(5), pages 1-15, May.
    18. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Spencer L Smith & Joshua T Trachtenberg, 2010. "The Refinement of Ipsilateral Eye Retinotopic Maps Is Increased by Removing the Dominant Contralateral Eye in Adult Mice," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-6, March.
    20. Isabel Espadas & Jenna L. Wingfield & Yoshihisa Nakahata & Kaushik Chanda & Eddie Grinman & Ilika Ghosh & Karl E. Bauer & Bindu Raveendra & Michael A. Kiebler & Ryohei Yasuda & Vidhya Rangaraju & Sath, 2024. "Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.