IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38529-y.html
   My bibliography  Save this article

Distributing task-related neural activity across a cortical network through task-independent connections

Author

Listed:
  • Christopher M. Kim

    (National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
    Howard Hughes Medical Institute)

  • Arseny Finkelstein

    (Tel Aviv University
    Tel Aviv University)

  • Carson C. Chow

    (National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health)

  • Karel Svoboda

    (Howard Hughes Medical Institute
    Allen Institute for Neural Dynamics)

  • Ran Darshan

    (Howard Hughes Medical Institute)

Abstract

Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. Task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

Suggested Citation

  • Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38529-y
    DOI: 10.1038/s41467-023-38529-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38529-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38529-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lior Lebovich & Ran Darshan & Yoni Lavi & David Hansel & Yonatan Loewenstein, 2019. "Idiosyncratic choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics," Nature Human Behaviour, Nature, vol. 3(11), pages 1190-1202, November.
    2. Guang Yang & Feng Pan & Wen-Biao Gan, 2009. "Stably maintained dendritic spines are associated with lifelong memories," Nature, Nature, vol. 462(7275), pages 920-924, December.
    3. Lior Lebovich & Ran Darshan & Yoni Lavi & David Hansel & Yonatan Loewenstein, 2019. "Publisher Correction: Idiosyncratic choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics," Nature Human Behaviour, Nature, vol. 3(12), pages 1345-1345, December.
    4. Tonghui Xu & Xinzhu Yu & Andrew J. Perlik & Willie F. Tobin & Jonathan A. Zweig & Kelly Tennant & Theresa Jones & Yi Zuo, 2009. "Rapid formation and selective stabilization of synapses for enduring motor memories," Nature, Nature, vol. 462(7275), pages 915-919, December.
    5. Akiko Hayashi-Takagi & Sho Yagishita & Mayumi Nakamura & Fukutoshi Shirai & Yi I. Wu & Amanda L. Loshbaugh & Brian Kuhlman & Klaus M. Hahn & Haruo Kasai, 2015. "Labelling and optical erasure of synaptic memory traces in the motor cortex," Nature, Nature, vol. 525(7569), pages 333-338, September.
    6. Nicholas A. Steinmetz & Peter Zatka-Haas & Matteo Carandini & Kenneth D. Harris, 2019. "Distributed coding of choice, action and engagement across the mouse brain," Nature, Nature, vol. 576(7786), pages 266-273, December.
    7. Ran Darshan & William E. Wood & Susan Peters & Arthur Leblois & David Hansel, 2017. "A canonical neural mechanism for behavioral variability," Nature Communications, Nature, vol. 8(1), pages 1-13, August.
    8. Nuo Li & Tsai-Wen Chen & Zengcai V. Guo & Charles R. Gerfen & Karel Svoboda, 2015. "A motor cortex circuit for motor planning and movement," Nature, Nature, vol. 519(7541), pages 51-56, March.
    9. Wilten Nicola & Claudia Clopath, 2017. "Supervised learning in spiking neural networks with FORCE training," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    10. Hidehiko K. Inagaki & Lorenzo Fontolan & Sandro Romani & Karel Svoboda, 2019. "Discrete attractor dynamics underlies persistent activity in the frontal cortex," Nature, Nature, vol. 566(7743), pages 212-217, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    5. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    6. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Eleni Mitsea & Athanasios Drigas & Charalabos Skianis, 2022. "ICTs and Speed Learning in Special Education: High-Consciousness Training Strategies for High-Capacity Learners through Metacognition Lens," Technium Social Sciences Journal, Technium Science, vol. 27(1), pages 230-252, January.
    12. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    15. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Masashi Hasegawa & Ziyan Huang & Ricardo Paricio-Montesinos & Jan Gründemann, 2024. "Network state changes in sensory thalamus represent learned outcomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Ayush Mandwal & Javier G Orlandi & Christoph Simon & Jörn Davidsen, 2021. "A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-34, May.
    19. Tristano Pancani & Michelle Day & Tatiana Tkatch & David L. Wokosin & Patricia González-Rodríguez & Jyothisri Kondapalli & Zhong Xie & Yu Chen & Vahri Beaumont & D. James Surmeier, 2023. "Cholinergic deficits selectively boost cortical intratelencephalic control of striatum in male Huntington’s disease model mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38529-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.