IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v462y2009i7275d10.1038_nature08389.html
   My bibliography  Save this article

Rapid formation and selective stabilization of synapses for enduring motor memories

Author

Listed:
  • Tonghui Xu

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

  • Xinzhu Yu

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

  • Andrew J. Perlik

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

  • Willie F. Tobin

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

  • Jonathan A. Zweig

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

  • Kelly Tennant

    (Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA)

  • Theresa Jones

    (Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA)

  • Yi Zuo

    (Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA)

Abstract

Synapse structure in memory: changes within hours Long-term memories for motor skill tasks are associated with enhanced synaptic efficacy in the motor cortex. Here, rapid structural responses in individual neurons are revealed to potentially underlie motor learning skill retention. In experiments in which mice were trained to perform a reaching task, new neuronal spines were selectively stabilized within hours, with different spines/putative synapse sets encoding distinct learned motor skills. These stabilized morphological changes are proposed to act as a motor memory substrate.

Suggested Citation

  • Tonghui Xu & Xinzhu Yu & Andrew J. Perlik & Willie F. Tobin & Jonathan A. Zweig & Kelly Tennant & Theresa Jones & Yi Zuo, 2009. "Rapid formation and selective stabilization of synapses for enduring motor memories," Nature, Nature, vol. 462(7275), pages 915-919, December.
  • Handle: RePEc:nat:nature:v:462:y:2009:i:7275:d:10.1038_nature08389
    DOI: 10.1038/nature08389
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08389
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Tamir Eisenstein & Edna Furman-Haran & Assaf Tal, 2024. "Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    8. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    9. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    10. Eleni Mitsea & Athanasios Drigas & Charalabos Skianis, 2022. "ICTs and Speed Learning in Special Education: High-Consciousness Training Strategies for High-Capacity Learners through Metacognition Lens," Technium Social Sciences Journal, Technium Science, vol. 27(1), pages 230-252, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:462:y:2009:i:7275:d:10.1038_nature08389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.