IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002689.html
   My bibliography  Save this article

Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex

Author

Listed:
  • Moritz Deger
  • Moritz Helias
  • Stefan Rotter
  • Markus Diesmann

Abstract

Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying processes at the synapses are not fully understood, there is strong evidence that a process of random, independent formation and pruning of excitatory synapses can be ruled out. Instead, there must be some cooperation between the synaptic contacts connecting a single pre- and postsynaptic neuron pair. So far, the mechanism of cooperation is not known. Here we demonstrate that local correlation detection at the postsynaptic dendritic spine suffices to explain the synaptic cooperation effect, without assuming any hypothetical direct interaction pathway between the synaptic contacts. Candidate biomolecular mechanisms for dendritic correlation detection have been identified previously, as well as for structural plasticity based thereon. By analyzing and fitting of a simple model, we show that spike-timing correlation dependent structural plasticity, without additional mechanisms of cross-synapse interaction, can reproduce the experimentally observed distributions of numbers of synaptic contacts between pairs of neurons in the neocortex. Furthermore, the model yields a first explanation for the existence of both transient and persistent dendritic spines and allows to make predictions for future experiments. Author Summary: Structural plasticity has been observed even in the adult mammalian neocortex – in seemingly static neuronal circuits structural remodeling is continuously at work. Still, it has been shown that the connection patterns between pairs of neurons are not random. In contrast, there is evidence that the synaptic contacts between a pair of neurons cooperate: several experimental studies report either zero or about 3–6 synapses between neuron pairs. The mechanism by which the synapses cooperate, however, has not yet been identified. Here we propose a model for structural plasticity that relies on local processes at the dendritic spine. We combine and extend the previous models and determine the equilibrium probability distribution of synaptic contact numbers of the model. By optimizing the parameters numerically for each of three reference datasets, we obtain equilibrium contact number distributions that fit the references very well. We conclude that the local dendritic mechanisms that we assume suffice to explain the cooperative synapse formation in the neocortex.

Suggested Citation

  • Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
  • Handle: RePEc:plo:pcbi00:1002689
    DOI: 10.1371/journal.pcbi.1002689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002689
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masanori Matsuzaki & Naoki Honkura & Graham C. R. Ellis-Davies & Haruo Kasai, 2004. "Structural basis of long-term potentiation in single dendritic spines," Nature, Nature, vol. 429(6993), pages 761-766, June.
    2. D. B. Chklovskii & B. W. Mel & K. Svoboda, 2004. "Cortical rewiring and information storage," Nature, Nature, vol. 431(7010), pages 782-788, October.
    3. Tonghui Xu & Xinzhu Yu & Andrew J. Perlik & Willie F. Tobin & Jonathan A. Zweig & Kelly Tennant & Theresa Jones & Yi Zuo, 2009. "Rapid formation and selective stabilization of synapses for enduring motor memories," Nature, Nature, vol. 462(7275), pages 915-919, December.
    4. Moritz Helias & Moritz Deger & Stefan Rotter & Markus Diesmann, 2010. "Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-10, September.
    5. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    2. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    2. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    3. David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
    4. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    5. María del Carmen Rodríguez-Martínez & Alba De la Plana Maestre & Juan Antonio Armenta-Peinado & Miguel Ángel Barbancho & Natalia García-Casares, 2021. "Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    6. Eleni Mitsea & Athanasios Drigas & Charalabos Skianis, 2022. "ICTs and Speed Learning in Special Education: High-Consciousness Training Strategies for High-Capacity Learners through Metacognition Lens," Technium Social Sciences Journal, Technium Science, vol. 27(1), pages 230-252, January.
    7. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Fausto-Sterling, Anne & Coll, Cynthia Garcia & Lamarre, Meaghan, 2012. "Sexing the baby: Part 2 applying dynamic systems theory to the emergences of sex-related differences in infants and toddlers," Social Science & Medicine, Elsevier, vol. 74(11), pages 1693-1702.
    9. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    10. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Spencer L Smith & Joshua T Trachtenberg, 2010. "The Refinement of Ipsilateral Eye Retinotopic Maps Is Increased by Removing the Dominant Contralateral Eye in Adult Mice," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-6, March.
    12. Isabel Espadas & Jenna L. Wingfield & Yoshihisa Nakahata & Kaushik Chanda & Eddie Grinman & Ilika Ghosh & Karl E. Bauer & Bindu Raveendra & Michael A. Kiebler & Ryohei Yasuda & Vidhya Rangaraju & Sath, 2024. "Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    13. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Chrisantha Fernando & Vera Vasas & Eörs Szathmáry & Phil Husbands, 2011. "Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-24, August.
    15. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    16. Glenn N Saxe & Daniel Calderone & Leah J Morales, 2018. "Brain entropy and human intelligence: A resting-state fMRI study," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    17. Kim, Sang-Yoon & Lim, Woochang, 2015. "Effect of small-world connectivity on fast sparsely synchronized cortical rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 109-123.
    18. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Roberto Ogelman & Luis E. Gomez Wulschner & Victoria M. Hoelscher & In-Wook Hwang & Victoria N. Chang & Won Chan Oh, 2024. "Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Ojasee Bapat & Tejas Purimetla & Sarah Kruessel & Monil Shah & Ruolin Fan & Christina Thum & Fiona Rupprecht & Julian D. Langer & Vidhya Rangaraju, 2024. "VAP spatially stabilizes dendritic mitochondria to locally support synaptic plasticity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.