IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32571-y.html
   My bibliography  Save this article

Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila

Author

Listed:
  • Laura Hermans

    (Brain Mind Institute & Institute of Bioengineering, EPFL
    Institute of Mechanical Engineering & Institute of Bioengineering, EPFL)

  • Murat Kaynak

    (Institute of Mechanical Engineering & Institute of Bioengineering, EPFL)

  • Jonas Braun

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

  • Victor Lobato Ríos

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

  • Chin-Lin Chen

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

  • Adam Friedberg

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

  • Semih Günel

    (Brain Mind Institute & Institute of Bioengineering, EPFL
    Computer Vision Laboratory, EPFL)

  • Florian Aymanns

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

  • Mahmut Selman Sakar

    (Institute of Mechanical Engineering & Institute of Bioengineering, EPFL)

  • Pavan Ramdya

    (Brain Mind Institute & Institute of Bioengineering, EPFL)

Abstract

The dynamics and connectivity of neural circuits continuously change on timescales ranging from milliseconds to an animal’s lifetime. Therefore, to understand biological networks, minimally invasive methods are required to repeatedly record them in behaving animals. Here we describe a suite of devices that enable long-term optical recordings of the adult Drosophila melanogaster ventral nerve cord (VNC). These consist of transparent, numbered windows to replace thoracic exoskeleton, compliant implants to displace internal organs, a precision arm to assist implantation, and a hinged stage to repeatedly tether flies. To validate and illustrate our toolkit we (i) show minimal impact on animal behavior and survival, (ii) follow the degradation of chordotonal organ mechanosensory nerve terminals over weeks after leg amputation, and (iii) uncover waves of neural activity caffeine ingestion. Thus, our long-term imaging toolkit opens up the investigation of premotor and motor circuit adaptations in response to injury, drug ingestion, aging, learning, and disease.

Suggested Citation

  • Laura Hermans & Murat Kaynak & Jonas Braun & Victor Lobato Ríos & Chin-Lin Chen & Adam Friedberg & Semih Günel & Florian Aymanns & Mahmut Selman Sakar & Pavan Ramdya, 2022. "Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32571-y
    DOI: 10.1038/s41467-022-32571-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32571-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32571-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satoshi Kawata & Hong-Bo Sun & Tomokazu Tanaka & Kenji Takada, 2001. "Finer features for functional microdevices," Nature, Nature, vol. 412(6848), pages 697-698, August.
    2. Yong-Hoon Jang & Hyo-Seok Chae & Young-Joon Kim, 2017. "Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    3. Tom Hindmarsh Sten & Rufei Li & Adriane Otopalik & Vanessa Ruta, 2021. "Sexual arousal gates visual processing during Drosophila courtship," Nature, Nature, vol. 595(7868), pages 549-553, July.
    4. Johannes D. Seelig & Vivek Jayaraman, 2015. "Neural dynamics for landmark orientation and angular path integration," Nature, Nature, vol. 521(7551), pages 186-191, May.
    5. Mel B. Feany & Welcome W. Bender, 2000. "A Drosophila model of Parkinson's disease," Nature, Nature, vol. 404(6776), pages 394-398, March.
    6. Joshua T. Trachtenberg & Brian E. Chen & Graham W. Knott & Guoping Feng & Joshua R. Sanes & Egbert Welker & Karel Svoboda, 2002. "Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex," Nature, Nature, vol. 420(6917), pages 788-794, December.
    7. Chin-Lin Chen & Laura Hermans & Meera C. Viswanathan & Denis Fortun & Florian Aymanns & Michael Unser & Anthony Cammarato & Michael H. Dickinson & Pavan Ramdya, 2018. "Imaging neural activity in the ventral nerve cord of behaving adult Drosophila," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    4. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. M. Jerome Beetz & Christian Kraus & Basil el Jundi, 2023. "Neural representation of goal direction in the monarch butterfly brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Shanel C Pickard & David J Bertsch & Zoe Le Garrec & Roy E Ritzmann & Roger D Quinn & Nicholas S Szczecinski, 2021. "Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis)," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    8. Lingling Guan & Chun Cao & Xi Liu & Qiulan Liu & Yiwei Qiu & Xiaobing Wang & Zhenyao Yang & Huiying Lai & Qiuyuan Sun & Chenliang Ding & Dazhao Zhu & Cuifang Kuang & Xu Liu, 2024. "Light and matter co-confined multi-photon lithography," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    10. Feng Jin & Jie Liu & Yuan-Yuan Zhao & Xian-Zi Dong & Mei-Ling Zheng & Xuan-Ming Duan, 2022. "λ/30 inorganic features achieved by multi-photon 3D lithography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Chen Zhang & Anmo J. Kim & Crisalesandra Rivera-Perez & Fernando G. Noriega & Young-Joon Kim, 2022. "The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Andrew M. M. Matheson & Aaron J. Lanz & Ashley M. Medina & Al M. Licata & Timothy A. Currier & Mubarak H. Syed & Katherine I. Nagel, 2022. "A neural circuit for wind-guided olfactory navigation," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    14. Sylvia Varland & Rui Duarte Silva & Ine Kjosås & Alexandra Faustino & Annelies Bogaert & Maximilian Billmann & Hadi Boukhatmi & Barbara Kellen & Michael Costanzo & Adrian Drazic & Camilla Osberg & Kat, 2023. "N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    15. Yuting Li & Zongyue Cheng & Chenmao Wang & Jianian Lin & Hehai Jiang & Meng Cui, 2024. "Geometric transformation adaptive optics (GTAO) for volumetric deep brain imaging through gradient-index lenses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Simao Coelho & Jongho Baek & James Walsh & J. Justin Gooding & Katharina Gaus, 2022. "Direct-laser writing for subnanometer focusing and single-molecule imaging," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Maxim R. Shcherbakov & Giovanni Sartorello & Simin Zhang & Joshua Bocanegra & Melissa Bosch & Michael Tripepi & Noah Talisa & Abdallah AlShafey & Joseph Smith & Stephen Londo & François Légaré & Enam , 2023. "Nanoscale reshaping of resonant dielectric microstructures by light-driven explosions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xianglong Lyu & Zhiqiang Zheng & Anitha Shiva & Mertcan Han & Cem Balda Dayan & Mingchao Zhang & Metin Sitti, 2024. "Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32571-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.