IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003150.html
   My bibliography  Save this article

A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems

Author

Listed:
  • Robert C Wilson
  • Matthew R Nassar
  • Joshua I Gold

Abstract

Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions in which the environment is stable. Recent studies have defined optimal solutions to learning problems in more general, potentially unstable, environments, but the relevance of these complex mathematical solutions to how the brain solves these problems remains unclear. Here, we show that one such Bayesian solution can be approximated by a computationally straightforward mixture of simple error-driven ‘Delta’ rules. This simpler model can make effective inferences in a dynamic environment and matches human performance on a predictive-inference task using a mixture of a small number of Delta rules. This model represents an important conceptual advance in our understanding of how the brain can use relatively simple computations to make nearly optimal inferences in a dynamic world.Author Summary: The ability to make accurate predictions is important to thrive in a dynamic world. Many predictions, like those made by a stock picker, are based, at least in part, on historical data thought also to reflect future trends. However, when unexpected changes occur, like an abrupt change in the value of a company that affects its stock price, the past can become irrelevant and we must rapidly update our beliefs. Previous research has shown that, under certain conditions, human predictions are similar to those of mathematical, ideal-observer models that make accurate predictions in the presence of change-points. Despite this progress, these models require superhuman feats of memory and computation and thus are unlikely to be implemented directly in the brain. In this work, we address this conundrum by developing an approximation to the ideal-observer model that drastically reduces the computational load with only a minimal cost in performance. We show that this model better explains human behavior than other models, including the optimal model, and suggest it as a biologically plausible model for learning and prediction.

Suggested Citation

  • Robert C Wilson & Matthew R Nassar & Joshua I Gold, 2013. "A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
  • Handle: RePEc:plo:pcbi00:1003150
    DOI: 10.1371/journal.pcbi.1003150
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003150
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003150&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
    2. Masayuki Matsumoto & Okihide Hikosaka, 2007. "Lateral habenula as a source of negative reward signals in dopamine neurons," Nature, Nature, vol. 447(7148), pages 1111-1115, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Skerritt-Davis & Mounya Elhilali, 2018. "Detecting change in stochastic sound sequences," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-24, May.
    2. Mel W Khaw & Luminita Stevens & Michael Woodford, 2021. "Individual differences in the perception of probability," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-25, April.
    3. Robert C Wilson & Yael Niv, 2015. "Is Model Fitting Necessary for Model-Based fMRI?," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    4. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    5. Payam Piray & Nathaniel D. Daw, 2021. "A model for learning based on the joint estimation of stochasticity and volatility," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Samuel J Gershman & Angela Radulescu & Kenneth A Norman & Yael Niv, 2014. "Statistical Computations Underlying the Dynamics of Memory Updating," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-13, November.
    7. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    2. Robyn Mary Brown & Jennifer Lynn Short & Andrew John Lawrence, 2010. "Identification of Brain Nuclei Implicated in Cocaine-Primed Reinstatement of Conditioned Place Preference: A Behaviour Dissociable from Sensitization," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-13, December.
    3. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    4. Soo Hyun Yang & Esther Yang & Jaekwang Lee & Jin Yong Kim & Hyeijung Yoo & Hyung Sun Park & Jin Taek Jung & Dongmin Lee & Sungkun Chun & Yong Sang Jo & Gyeong Hee Pyeon & Jae-Yong Park & Hyun Woo Lee , 2023. "Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Yukio Ohsawa, 2018. "Graph-Based Entropy for Detecting Explanatory Signs of Changes in Market," The Review of Socionetwork Strategies, Springer, vol. 12(2), pages 183-203, December.
    6. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
    8. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    9. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    10. Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
    11. Inder Tecuapetla-Gómez & Axel Munk, 2017. "Autocovariance Estimation in Regression with a Discontinuous Signal and m-Dependent Errors: A Difference-Based Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 346-368, June.
    12. Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
    13. Paul Leon Brown & Paul D Shepard, 2013. "Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    14. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    15. Tommaso Ianni & Sedona N. Ewbank & Marjorie R. Levinstein & Matine M. Azadian & Reece C. Budinich & Michael Michaelides & Raag D. Airan, 2024. "Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    17. Anton Ilango & Jason Shumake & Wolfram Wetzel & Henning Scheich & Frank W Ohl, 2013. "Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    18. Eric Ruggieri, 2018. "A pruned recursive solution to the multiple change point problem," Computational Statistics, Springer, vol. 33(2), pages 1017-1045, June.
    19. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    20. Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.