IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0065684.html
   My bibliography  Save this article

Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response

Author

Listed:
  • Anton Ilango
  • Jason Shumake
  • Wolfram Wetzel
  • Henning Scheich
  • Frank W Ohl

Abstract

The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation.

Suggested Citation

  • Anton Ilango & Jason Shumake & Wolfram Wetzel & Henning Scheich & Frank W Ohl, 2013. "Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
  • Handle: RePEc:plo:pone00:0065684
    DOI: 10.1371/journal.pone.0065684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0065684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masayuki Matsumoto & Okihide Hikosaka, 2007. "Lateral habenula as a source of negative reward signals in dopamine neurons," Nature, Nature, vol. 447(7148), pages 1111-1115, June.
    2. Bo Li & Joaquin Piriz & Martine Mirrione & ChiHye Chung & Christophe D. Proulx & Daniela Schulz & Fritz Henn & Roberto Malinow, 2011. "Synaptic potentiation onto habenula neurons in the learned helplessness model of depression," Nature, Nature, vol. 470(7335), pages 535-539, February.
    3. F. W. Ohl & H. Scheich & W. J. Freeman, 2001. "Change in pattern of ongoing cortical activity with auditory category learning," Nature, Nature, vol. 412(6848), pages 733-736, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maggie W. Waung & Kayla A. Maanum & Thomas J. Cirino & Joseph R. Driscoll & Chris O’Brien & Svetlana Bryant & Kasra A. Mansourian & Marisela Morales & David J. Barker & Elyssa B. Margolis, 2022. "A diencephalic circuit in rats for opioid analgesia but not positive reinforcement," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Robyn Mary Brown & Jennifer Lynn Short & Andrew John Lawrence, 2010. "Identification of Brain Nuclei Implicated in Cocaine-Primed Reinstatement of Conditioned Place Preference: A Behaviour Dissociable from Sensitization," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-13, December.
    3. Soo Hyun Yang & Esther Yang & Jaekwang Lee & Jin Yong Kim & Hyeijung Yoo & Hyung Sun Park & Jin Taek Jung & Dongmin Lee & Sungkun Chun & Yong Sang Jo & Gyeong Hee Pyeon & Jae-Yong Park & Hyun Woo Lee , 2023. "Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    5. Paul Leon Brown & Paul D Shepard, 2013. "Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    6. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    7. Tommaso Ianni & Sedona N. Ewbank & Marjorie R. Levinstein & Matine M. Azadian & Reece C. Budinich & Michael Michaelides & Raag D. Airan, 2024. "Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Robert C Wilson & Matthew R Nassar & Joshua I Gold, 2013. "A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    9. Li Shen & Guang-Wei Zhang & Can Tao & Michelle B. Seo & Nicole K. Zhang & Junxiang J. Huang & Li I. Zhang & Huizhong W. Tao, 2022. "A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0065684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.