IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008871.html
   My bibliography  Save this article

Individual differences in the perception of probability

Author

Listed:
  • Mel W Khaw
  • Luminita Stevens
  • Michael Woodford

Abstract

In recent studies of humans estimating non-stationary probabilities, estimates appear to be unbiased on average, across the full range of probability values to be estimated. This finding is surprising given that experiments measuring probability estimation in other contexts have often identified conservatism: individuals tend to overestimate low probability events and underestimate high probability events. In other contexts, repulsive biases have also been documented, with individuals producing judgments that tend toward extreme values instead. Using extensive data from a probability estimation task that produces unbiased performance on average, we find substantial biases at the individual level; we document the coexistence of both conservative and repulsive biases in the same experimental context. Individual biases persist despite extensive experience with the task, and are also correlated with other behavioral differences, such as individual variation in response speed and adjustment rates. We conclude that the rich computational demands of our task give rise to a variety of behavioral patterns, and that the apparent unbiasedness of the pooled data is an artifact of the aggregation of heterogeneous biases.Author summary: Humans often misrepresent probabilities, frequencies, and proportions they encounter—either overestimating or underestimating the true underlying values. Understanding the cognitive and neural representation of such quantities is important, as probabilities are present in all kinds of impactful decisions—e.g., as we assess the likelihood of a dangerous event or the probable returns on a financial investment. Despite the ubiquitous observation that humans are biased in estimating probabilities, a new laboratory task reportedly elicits unbiased performance. This task involves predicting the likelihood of a green ring emerging from a box containing red and green rings; as subjects draw rings and report their estimates, the ring composition of the box itself changes infrequently. Here we perform a novel and thorough analysis of individuals’ performance on one such experiment, showing that people are indeed biased in idiosyncratic ways. These patterns are unexamined by studies focusing on average performance: some people routinely report an exaggerated range of probabilities, some favor intermediate values, while others are approximately unbiased. These biases persist across hours of experience and accompany other tendencies such as quickness in response. We show that subjects’ idiosyncrasies can be understood as arising from various cognitive mechanisms; nonetheless, subjects reports are best described as resembling a distorted version of the optimal statistical estimate.

Suggested Citation

  • Mel W Khaw & Luminita Stevens & Michael Woodford, 2021. "Individual differences in the perception of probability," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-25, April.
  • Handle: RePEc:plo:pcbi00:1008871
    DOI: 10.1371/journal.pcbi.1008871
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008871
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008871&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Aaron M. Bornstein & Mel W. Khaw & Daphna Shohamy & Nathaniel D. Daw, 2017. "Reminders of past choices bias decisions for reward in humans," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Khaw, Mel Win & Stevens, Luminita & Woodford, Michael, 2017. "Discrete adjustment to a changing environment: Experimental evidence," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 88-103.
    4. Cade Massey & George Wu, 2005. "Detecting Regime Shifts: The Causes of Under- and Overreaction," Management Science, INFORMS, vol. 51(6), pages 932-947, June.
    5. Ambuehl, Sandro & Li, Shengwu, 2018. "Belief updating and the demand for information," Games and Economic Behavior, Elsevier, vol. 109(C), pages 21-39.
    6. Robert C Wilson & Matthew R Nassar & Joshua I Gold, 2013. "A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    7. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    8. Timo Henckel & Gordon D. Menzies & Peter G. Moffatt & Daniel J. Zizzo, 2022. "Belief adjustment: a double hurdle model and experimental evidence," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 26-67, February.
    9. Thomas S. Wallsten & David V. Budescu, 1983. "State of the Art---Encoding Subjective Probabilities: A Psychological and Psychometric Review," Management Science, INFORMS, vol. 29(2), pages 151-173, February.
    10. Dianna R. Amasino & Nicolette J. Sullivan & Rachel E. Kranton & Scott A. Huettel, 2019. "Amount and time exert independent influences on intertemporal choice," Nature Human Behaviour, Nature, vol. 3(4), pages 383-392, April.
    11. Brenner, Lyle A. & Koehler, Derek J. & Liberman, Varda & Tversky, Amos, 1996. "Overconfidence in Probability and Frequency Judgments: A Critical Examination," Organizational Behavior and Human Decision Processes, Elsevier, vol. 65(3), pages 212-219, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    2. Alex Stomper & Marie-Louise Vierø, 2015. "Iterated Expectations Under Rank-dependent Expected Utility And Model Consistency," Working Paper 1228, Economics Department, Queen's University.
    3. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    4. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    5. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    6. Che-Yuan Liang, 2017. "Optimal inequality behind the veil of ignorance," Theory and Decision, Springer, vol. 83(3), pages 431-455, October.
    7. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    8. Ariane Charpin, 2018. "Tests des modèles de décision en situation de risque. Le cas des parieurs hippiques en France," Revue économique, Presses de Sciences-Po, vol. 69(5), pages 779-803.
    9. Bocqueho, Geraldine & Jacquet, Florence & Reynaud, Arnaud, 2011. "Expected Utility or Prospect Theory Maximizers? Results from a Structural Model based on Field-experiment Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114257, European Association of Agricultural Economists.
    10. Freudenreich, Hanna & Musshoff, Oliver & Wiercinski, Ben, 2017. "The Relationship between Farmers' Shock Experiences and their Uncertainty Preferences - Experimental Evidence from Mexico," GlobalFood Discussion Papers 256212, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    11. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.
    13. Olivier Chanel & Graciela Chichilnisky, 2009. "The influence of fear in decisions: Experimental evidence," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 271-298, December.
    14. Tsang, Ming, 2020. "Estimating uncertainty aversion using the source method in stylized tasks with varying degrees of uncertainty," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 84(C).
    15. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2013. "Salience and Consumer Choice," Journal of Political Economy, University of Chicago Press, vol. 121(5), pages 803-843.
    16. Yves Alarie & Georges Dionne, 2005. "Testing Explanations of Preference Reversal: a Model," Cahiers de recherche 0510, CIRPEE.
    17. Døskeland, Trond M. & Nordahl, Helge A., 2008. "Optimal pension insurance design," Journal of Banking & Finance, Elsevier, vol. 32(3), pages 382-392, March.
    18. Holden, Stein T. & Tilahun, Mesfin, 2019. "How related are risk preferences and time preferences?," CLTS Working Papers 4/19, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.
    19. Mohammed Abdellaoui & Emmanuel Kemel, 2014. "Eliciting Prospect Theory When Consequences Are Measured in Time Units: “Time Is Not Money”," Management Science, INFORMS, vol. 60(7), pages 1844-1859, July.
    20. Kontek, Krzysztof, 2010. "Linking Decision and Time Utilities," MPRA Paper 27541, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.