High-dimensional, multiscale online changepoint detection
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
- Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
- Rafal Baranowski & Yining Chen & Piotr Fryzlewicz, 2019. "Narrowest‐over‐threshold detection of multiple change points and change‐point‐like features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 649-672, July.
- Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
- Tengyao Wang & Richard J. Samworth, 2018. "High dimensional change point estimation via sparse projection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 57-83, January.
- Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
- Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005.
"Monitoring structural change in dynamic econometric models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
- Kurt Hornik & Friedrich Leisch & Christian Kleiber & Achim Zeileis, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121.
- Zeileis, Achim & Leisch, Friedrich & Kleiber, Christian & Hornik, Kurt, 2002. "Monitoring structural change in dynamic econometric models," Technical Reports 2002,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
- Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
- Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Du, Lilun & Wen, Mengtao, 2023. "False discovery rate approach to dynamic change detection," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
- Tuomas Rajala & Petteri Packalen & Mari Myllymäki & Annika Kangas, 2023. "Improving Detection of Changepoints in Short and Noisy Time Series with Local Correlations: Connecting the Events in Pixel Neighbourhoods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 564-590, September.
- Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
- Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
- Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Bertille Follain & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional changepoint estimation with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 1023-1055, July.
- Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
- Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
- Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
- Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
- Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
- Eklund, Jana & Kapetanios, George & Price, Simon, 2010.
"Forecasting in the presence of recent structural change,"
Bank of England working papers
406, Bank of England.
- Eklund, J. & Kapetanios, G. & Price, S., 2011. "Forecasting in the presence of recent structural change," Working Papers 11/05, Department of Economics, City University London.
- Jana Eklund & George Kapetanios & Simon Price, 2011. "Forecasting in the presence of recent structural change," CAMA Working Papers 2011-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hsu, Chih-Chiang, 2007. "The MOSUM of squares test for monitoring variance changes," Finance Research Letters, Elsevier, vol. 4(4), pages 254-260, December.
- Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
- Jan J. J. Groen & George Kapetanios & Simon Price, 2013.
"Multivariate Methods For Monitoring Structural Change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
- Groen, Jan J J & Kapetanios, George & Price, Simon, 2009. "Multivariate methods for monitoring structural change," Bank of England working papers 369, Bank of England.
- Jan J.J. Groen & George Kapetanios & Simon Price, 2010. "Multivariate Methods for Monitoring Structural Change," Working Papers 658, Queen Mary University of London, School of Economics and Finance.
- Jan J.J. Groen & George Kapetanios & Simon Price, 2010. "Multivariate Methods for Monitoring Structural Change," Working Papers 658, Queen Mary University of London, School of Economics and Finance.
- Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
- Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
- Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Jan Verbesselt & Achim Zeileis & Martin Herold, 2011. "Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia," Working Papers 2011-18, Faculty of Economics and Statistics, Universität Innsbruck.
- Anatolyev Stanislav & Kosenok Grigory, 2018.
"Sequential Testing with Uniformly Distributed Size,"
Journal of Time Series Econometrics, De Gruyter, vol. 10(2), pages 1-22, July.
- Stanislav Anatolyev & Grigory Kosenok, 2011. "Sequential Testing with Uniformly Distributed Size," Working Papers w0123, New Economic School (NES).
- Stanislav Anatolyev & Grigory Kosenok, 2011. "Sequential Testing with Uniformly Distributed Size," Working Papers w0123, Center for Economic and Financial Research (CEFIR).
More about this item
Keywords
average run length; detection delay; high-dimensional changepoint detection; online algorithm; sequential method;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-02-21 (Econometrics)
- NEP-ETS-2022-02-21 (Econometric Time Series)
- NEP-ORE-2022-02-21 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:113665. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.