IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006681.html
   My bibliography  Save this article

Human online adaptation to changes in prior probability

Author

Listed:
  • Elyse H Norton
  • Luigi Acerbi
  • Wei Ji Ma
  • Michael S Landy

Abstract

Optimal sensory decision-making requires the combination of uncertain sensory signals with prior expectations. The effect of prior probability is often described as a shift in the decision criterion. Can observers track sudden changes in probability? To answer this question, we used a change-point detection paradigm that is frequently used to examine behavior in changing environments. In a pair of orientation-categorization tasks, we investigated the effects of changing probabilities on decision-making. In both tasks, category probability was updated using a sample-and-hold procedure: probability was held constant for a period of time before jumping to another probability state that was randomly selected from a predetermined set of probability states. We developed an ideal Bayesian change-point detection model in which the observer marginalizes over both the current run length (i.e., time since last change) and the current category probability. We compared this model to various alternative models that correspond to different strategies—from approximately Bayesian to simple heuristics—that the observers may have adopted to update their beliefs about probabilities. While a number of models provided decent fits to the data, model comparison favored a model in which probability is estimated following an exponential averaging model with a bias towards equal priors, consistent with a conservative bias, and a flexible variant of the Bayesian change-point detection model with incorrect beliefs. We interpret the former as a simpler, more biologically plausible explanation suggesting that the mechanism underlying change of decision criterion is a combination of on-line estimation of prior probability and a stable, long-term equal-probability prior, thus operating at two very different timescales.Author summary: We demonstrate how people learn and adapt to changes to the probability of occurrence of one of two categories on decision-making under uncertainty. The study combined psychophysical behavioral tasks with computational modeling. We used two behavioral tasks: a typical forced-choice categorization task as well as one in which the observer specified the decision criterion to use on each trial before the stimulus was displayed. We formulated an ideal Bayesian change-point detection model and compared it to several alternative models. We found that the data are explained best by a model that estimates category probability based on recently observed exemplars with a bias towards equal probability. Our results suggest that the brain takes multiple relevant time scales into account when setting category expectations.

Suggested Citation

  • Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
  • Handle: RePEc:plo:pcbi00:1006681
    DOI: 10.1371/journal.pcbi.1006681
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006681
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006681&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    2. Andrew J Wismer & Corey J Bohil, 2017. "Base-rate sensitivity through implicit learning," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-21, June.
    3. David R Wozny & Ulrik R Beierholm & Ladan Shams, 2010. "Probability Matching as a Computational Strategy Used in Perception," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-7, August.
    4. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    5. Robert C Wilson & Matthew R Nassar & Joshua I Gold, 2013. "A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    6. Adam M Gifford & Yale E Cohen & Alan A Stocker, 2014. "Characterizing the Impact of Category Uncertainty on Human Auditory Categorization Behavior," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-15, July.
    7. Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.
    8. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    9. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    10. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    11. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    12. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    13. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    2. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    3. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    4. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    5. Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.
    6. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    7. Srishti Goel & Julian Jara-Ettinger & Desmond C. Ong & Maria Gendron, 2024. "Face and context integration in emotion inference is limited and variable across categories and individuals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    9. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    10. James R H Cooke & Arjan C ter Horst & Robert J van Beers & W Pieter Medendorp, 2017. "Effect of depth information on multiple-object tracking in three dimensions: A probabilistic perspective," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-18, July.
    11. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    12. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    13. Mel W Khaw & Luminita Stevens & Michael Woodford, 2021. "Individual differences in the perception of probability," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-25, April.
    14. Jacques Pesnot Lerousseau & Cesare V. Parise & Marc O. Ernst & Virginie Wassenhove, 2022. "Multisensory correlation computations in the human brain identified by a time-resolved encoding model," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    16. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    19. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    20. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.