IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i9p3314-3323.html
   My bibliography  Save this article

Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome

Author

Listed:
  • Tian, Guo-Liang
  • Ng, Kai Wang
  • Li, Kai-Can
  • Tan, Ming

Abstract

Diarrhoea-associated Haemolytic Uraemic syndrome (HUS) is a disease that affects the kidneys and other organs. Motivated by the annual number of cases of HUS collected in Birmingham and Newcastle of England, respectively, from 1970 to 1989, we consider Bayesian changepoint analysis with specific attention to Poisson changepoint models. For changepoint models with unknown number of changepoints, we propose a new non-iterative Bayesian sampling approach (called exact IBF sampling), which completely avoids the problem of convergence and slow convergence associated with iterative Markov chain Monte Carlo (MCMC) methods. The idea is to first utilize the sampling inverse Bayes formula (IBF) to derive the conditional distribution of the latent data given the observed data, and then to draw iid samples from the complete-data posterior distribution. For the purpose of selecting the appropriate model (or determining the number of changepoints), we develop two alternative formulae to exactly calculate marginal likelihood (or Bayes factor) by using the exact IBF output and the point-wise IBF, respectively. The HUS data are re-analyzed using the proposed methods. Simulations are implemented to validate the performance of the proposed methods.

Suggested Citation

  • Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3314-3323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00039-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Henderson & J. N. S. Matthews, 1993. "An Investigation of Changepoints in the Annual Number of Cases of Haemolytic Uraemic Syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(3), pages 461-471, September.
    2. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    3. Ming‐Hui Chen, 2005. "Computing marginal likelihoods from a single MCMC output," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 16-29, February.
    4. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    5. Aaron L. Halpern, 1999. "Minimally Selected P and Other Tests for A Single Abrupt Changepoint in A Binary Sequence," Biometrics, The International Biometric Society, vol. 55(4), pages 1044-1050, December.
    6. Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
    7. Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    2. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    3. Eric Ruggieri, 2018. "A pruned recursive solution to the multiple change point problem," Computational Statistics, Springer, vol. 33(2), pages 1017-1045, June.
    4. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    5. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    6. Fernando Ferraz do Nascimento & Wyara Vanesa Moura e Silva, 2017. "A Bayesian model for multiple change point to extremes, with application to environmental and financial data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2410-2426, October.
    7. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    8. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    9. Ardia, David & Dufays, Arnaud & Ordás Criado, Carlos, 2023. "Linking Frequentist and Bayesian Change-Point Methods," MPRA Paper 119486, University Library of Munich, Germany.
    10. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
    11. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    12. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    13. Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
    14. Smith, Simon C., 2017. "Equity premium estimates from economic fundamentals under structural breaks," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 49-61.
    15. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    16. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    17. Galeano, Pedro, 2007. "The use of cumulative sums for detection of changepoints in the rate parameter of a Poisson Process," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6151-6165, August.
    18. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
    19. Ko, Stanley I. M. & Chong, Terence T. L. & Ghosh, Pulak, 2014. "Dirichlet Process Hidden Markov Multiple Change-point Model," MPRA Paper 57871, University Library of Munich, Germany.
    20. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3314-3323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.