IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000205.html
   My bibliography  Save this article

Cell Groups Reveal Structure of Stimulus Space

Author

Listed:
  • Carina Curto
  • Vladimir Itskov

Abstract

An important task of the brain is to represent the outside world. It is unclear how the brain may do this, however, as it can only rely on neural responses and has no independent access to external stimuli in order to “decode” what those responses mean. We investigate what can be learned about a space of stimuli using only the action potentials (spikes) of cells with stereotyped—but unknown—receptive fields. Using hippocampal place cells as a model system, we show that one can (1) extract global features of the environment and (2) construct an accurate representation of space, up to an overall scale factor, that can be used to track the animal's position. Unlike previous approaches to reconstructing position from place cell activity, this information is derived without knowing place fields or any other functions relating neural responses to position. We find that simply knowing which groups of cells fire together reveals a surprising amount of structure in the underlying stimulus space; this may enable the brain to construct its own internal representations.Author Summary: We construct our understanding of the world solely from neuronal activity generated in our brains. How do we do this? Many studies have investigated how neural activity is related to outside stimuli, and maps of these relationships (often called receptive fields) are routinely computed from data collected in neuroscience experiments. Yet how the brain can understand the meaning of this activity, without the dictionary provided by these maps, remains a mystery. We tackle this fundamental question in the context of hippocampal place cells—i.e., neurons in rodent hippocampus whose activity is strongly correlated to the animal's position in space. We find that the structure of stimulus space can be revealed by exploiting relationships between groups of cofiring neurons in response to different stimuli. We provide a ‘proof of principle’ by demonstrating constructively how the topology of space and the animal's position in an environment can be derived purely from the action potentials fired by hippocampal place cells. In this way, the brain may be able to build up structured representations of stimulus spaces that are then used to represent external stimuli.

Suggested Citation

  • Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
  • Handle: RePEc:plo:pcbi00:1000205
    DOI: 10.1371/journal.pcbi.1000205
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000205
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000205&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    2. Robert C. Froemke & Michael M. Merzenich & Christoph E. Schreiner, 2007. "A synaptic memory trace for cortical receptive field plasticity," Nature, Nature, vol. 450(7168), pages 425-429, November.
    3. Colin Lever & Tom Wills & Francesca Cacucci & Neil Burgess & John O'Keefe, 2002. "Long-term plasticity in hippocampal place-cell representation of environmental geometry," Nature, Nature, vol. 416(6876), pages 90-94, March.
    4. David J. Foster & Matthew A. Wilson, 2006. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state," Nature, Nature, vol. 440(7084), pages 680-683, March.
    5. Emma R. Wood & Paul A. Dudchenko & Howard Eichenbaum, 1999. "The global record of memory in hippocampal neuronal activity," Nature, Nature, vol. 397(6720), pages 613-616, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Samir Chowdhury & Bowen Dai & Facundo Mémoli, 2018. "The importance of forgetting: Limiting memory improves recovery of topological characteristics from neural data," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    3. Y Dabaghian & F Mémoli & L Frank & G Carlsson, 2012. "A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-14, August.
    4. Mamiko Arai & Vicky Brandt & Yuri Dabaghian, 2014. "The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    5. Williams, Robert, 2018. "Strongly maximal intersection-complete neural codes on grids are convex," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 162-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Caleb Kemere & Margaret F Carr & Mattias P Karlsson & Loren M Frank, 2013. "Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    3. Yi-Fan Zeng & Ke-Xin Yang & Yilong Cui & Xiao-Na Zhu & Rui Li & Hanqing Zhang & Dong Chuan Wu & Raymond C. Stevens & Ji Hu & Ning Zhou, 2024. "Conjunctive encoding of exploratory intentions and spatial information in the hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Margot C Bjoring & C Daniel Meliza, 2019. "A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-20, January.
    5. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    6. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Yung-Tian A. Gau & Eric T. Hsu & Richard J. Cha & Rebecca W. Pak & Loren L. Looger & Jin U. Kang & Dwight E. Bergles, 2024. "Multicore fiber optic imaging reveals that astrocyte calcium activity in the mouse cerebral cortex is modulated by internal motivational state," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    10. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    12. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    13. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    14. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    16. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    18. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    19. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    20. Hefei Guan & Steven J. Middleton & Takafumi Inoue & Thomas J. McHugh, 2021. "Lateralization of CA1 assemblies in the absence of CA3 input," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.