IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6948d10.1038_nature01834.html
   My bibliography  Save this article

Organization of cell assemblies in the hippocampus

Author

Listed:
  • Kenneth D. Harris

    (The State University of New Jersey)

  • Jozsef Csicsvari

    (The State University of New Jersey
    MRC Anatomical Neuropharmacology Unit)

  • Hajime Hirase

    (The State University of New Jersey)

  • George Dragoi

    (The State University of New Jersey)

  • György Buzsáki

    (The State University of New Jersey)

Abstract

Neurons can produce action potentials with high temporal precision1. A fundamental issue is whether, and how, this capability is used in information processing. According to the ‘cell assembly’ hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms2,3,4. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation5,6,7,8. The time window in which spike times are best predicted from simultaneous peer activity is 10–30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons9, the period of the hippocampal gamma oscillation10 and the time window for synaptic plasticity11, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.

Suggested Citation

  • Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6948:d:10.1038_nature01834
    DOI: 10.1038/nature01834
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01834
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Mamiko Arai & Vicky Brandt & Yuri Dabaghian, 2014. "The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    3. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    4. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    6. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    8. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    9. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    10. Shohei Hidaka & Masafumi Oizumi, 2018. "Fast and exact search for the partition with minimal information loss," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-14, September.
    11. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    12. Maxim Volgushev & Vladimir Ilin & Ian H Stevenson, 2015. "Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-31, March.
    13. Caleb Kemere & Margaret F Carr & Mattias P Karlsson & Loren M Frank, 2013. "Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    14. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    16. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    17. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6948:d:10.1038_nature01834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.