IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56731-y.html
   My bibliography  Save this article

Exploring replay

Author

Listed:
  • Georgy Antonov

    (Max Planck Institute for Biological Cybernetics
    International Max Planck Research School, University of Tübingen)

  • Peter Dayan

    (Max Planck Institute for Biological Cybernetics
    University of Tübingen)

Abstract

Animals face uncertainty about their environments due to initial ignorance or subsequent changes. They therefore need to explore. However, the algorithmic structure of exploratory choices in the brain still remains largely elusive. Artificial agents face the same problem, and a venerable idea in reinforcement learning is that they can plan appropriate exploratory choices offline, during the equivalent of quiet wakefulness or sleep. Although offline processing in humans and other animals, in the form of hippocampal replay and preplay, has recently been the subject of highly informative modelling, existing methods only apply to known environments. Thus, they cannot predict exploratory replay choices during learning and/or behaviour in the face of uncertainty. Here, we extend an influential theory of hippocampal replay and examine its potential role in approximately optimal exploration, deriving testable predictions for the patterns of exploratory replay choices in a paradigmatic spatial navigation task. Our modelling provides a normative interpretation of the available experimental data suggestive of exploratory replay. Furthermore, we highlight the importance of sequence replay, and license a range of new experimental paradigms that should further our understanding of offline processing.

Suggested Citation

  • Georgy Antonov & Peter Dayan, 2025. "Exploring replay," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56731-y
    DOI: 10.1038/s41467-025-56731-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56731-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56731-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56731-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.