IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003651.html
   My bibliography  Save this article

The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map

Author

Listed:
  • Mamiko Arai
  • Vicky Brandt
  • Yuri Dabaghian

Abstract

Learning arises through the activity of large ensembles of cells, yet most of the data neuroscientists accumulate is at the level of individual neurons; we need models that can bridge this gap. We have taken spatial learning as our starting point, computationally modeling the activity of place cells using methods derived from algebraic topology, especially persistent homology. We previously showed that ensembles of hundreds of place cells could accurately encode topological information about different environments (“learn” the space) within certain values of place cell firing rate, place field size, and cell population; we called this parameter space the learning region. Here we advance the model both technically and conceptually. To make the model more physiological, we explored the effects of theta precession on spatial learning in our virtual ensembles. Theta precession, which is believed to influence learning and memory, did in fact enhance learning in our model, increasing both speed and the size of the learning region. Interestingly, theta precession also increased the number of spurious loops during simplicial complex formation. We next explored how downstream readout neurons might define co-firing by grouping together cells within different windows of time and thereby capturing different degrees of temporal overlap between spike trains. Our model's optimum coactivity window correlates well with experimental data, ranging from ∼150–200 msec. We further studied the relationship between learning time, window width, and theta precession. Our results validate our topological model for spatial learning and open new avenues for connecting data at the level of individual neurons to behavioral outcomes at the neuronal ensemble level. Finally, we analyzed the dynamics of simplicial complex formation and loop transience to propose that the simplicial complex provides a useful working description of the spatial learning process.Author Summary: One of the challenges in contemporary neuroscience is that we have few ways to connect data about the features of individual neurons with effects (such as learning) that emerge only at the scale of large cell ensembles. We are tackling this problem using spatial learning as a starting point. In previous work we created a computational model of spatial learning using concepts from the field of algebraic topology, proposing that the hippocampal map encodes topological features of an environment (connectivity) rather than precise metrics (distances and angles between locations)—more akin to a subway map than a street map. Our model simulates the activity of place cells as a rat navigates the experimental space so that we can estimate the effect produced by specific electrophysiological components —cell firing rate, population size, etc.—on the net outcome. In this work, we show that θ phase precession significantly enhanced spatial learning, and that the way downstream neurons group cells together into coactivity windows exerts interesting effects on learning time. These findings strongly support the notion that theta phase precession enhances spatial learning. Finally, we propose that ideas from topological theory provide a conceptually elegant description of the actual learning process.

Suggested Citation

  • Mamiko Arai & Vicky Brandt & Yuri Dabaghian, 2014. "The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
  • Handle: RePEc:plo:pcbi00:1003651
    DOI: 10.1371/journal.pcbi.1003651
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003651
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003651&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brandy Schmidt & A. David Redish, 2013. "Navigation with a cognitive map," Nature, Nature, vol. 497(7447), pages 42-43, May.
    2. Karel Jezek & Espen J. Henriksen & Alessandro Treves & Edvard I. Moser & May-Britt Moser, 2011. "Theta-paced flickering between place-cell maps in the hippocampus," Nature, Nature, vol. 478(7368), pages 246-249, October.
    3. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    4. Y Dabaghian & F Mémoli & L Frank & G Carlsson, 2012. "A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-14, August.
    5. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    6. Kenneth D. Harris & Darrell A. Henze & Hajime Hirase & Xavier Leinekugel & George Dragoi & Andras Czurkó & György Buzsáki, 2002. "Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells," Nature, Nature, vol. 417(6890), pages 738-741, June.
    7. Inah Lee & D. Yoganarasimha & Geeta Rao & James J. Knierim, 2004. "Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3," Nature, Nature, vol. 430(6998), pages 456-459, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samir Chowdhury & Bowen Dai & Facundo Mémoli, 2018. "The importance of forgetting: Limiting memory improves recovery of topological characteristics from neural data," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    2. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    3. Eleonora Russo & Nadine Becker & Aleks P. F. Domanski & Timothy Howe & Kipp Freud & Daniel Durstewitz & Matthew W. Jones, 2024. "Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Li Zheng & Zhiyao Gao & Andrew S. McAvan & Eve A. Isham & Arne D. Ekstrom, 2021. "Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    7. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    8. Trygve Solstad & Hosam N Yousif & Terrence J Sejnowski, 2014. "Place Cell Rate Remapping by CA3 Recurrent Collaterals," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-10, June.
    9. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    10. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    11. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    12. Mark Niedringhaus & Xin Chen & Rhonda Dzakpasu, 2015. "Long-Term Dynamical Constraints on Pharmacologically Evoked Potentiation Imply Activity Conservation within In Vitro Hippocampal Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    13. Williams, Robert, 2018. "Strongly maximal intersection-complete neural codes on grids are convex," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 162-175.
    14. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Pahor, Anja & Jaušovec, Norbert, 2017. "Multifaceted pattern of neural efficiency in working memory capacity," Intelligence, Elsevier, vol. 65(C), pages 23-34.
    16. Efimova, Natalia & Tyukin, Ivan & Kazantsev, Victor, 2024. "Spiking phase control in synaptically coupled Hodgkin–Huxley neurons," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    17. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    18. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Jie Zheng & Mar Yebra & Andrea G. P. Schjetnan & Kramay Patel & Chaim N. Katz & Michael Kyzar & Clayton P. Mosher & Suneil K. Kalia & Jeffrey M. Chung & Chrystal M. Reed & Taufik A. Valiante & Adam N., 2024. "Theta phase precession supports memory formation and retrieval of naturalistic experience in humans," Nature Human Behaviour, Nature, vol. 8(12), pages 2423-2436, December.
    20. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.