IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31254-y.html
   My bibliography  Save this article

Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations

Author

Listed:
  • Omer Hazon

    (Stanford University)

  • Victor H. Minces

    (University California San Diego)

  • David P. Tomàs

    (Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

  • Surya Ganguli

    (Stanford University)

  • Mark J. Schnitzer

    (Stanford University)

  • Pablo E. Jercog

    (Stanford University
    Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

Abstract

Neurons in the CA1 area of the mouse hippocampus encode the position of the animal in an environment. However, given the variability in individual neurons responses, the accuracy of this code is still poorly understood. It was proposed that downstream areas could achieve high spatial accuracy by integrating the activity of thousands of neurons, but theoretical studies point to shared fluctuations in the firing rate as a potential limitation. Using high-throughput calcium imaging in freely moving mice, we demonstrated the limiting factors in the accuracy of the CA1 spatial code. We found that noise correlations in the hippocampus bound the estimation error of spatial coding to ~10 cm (the size of a mouse). Maximal accuracy was obtained using approximately [300–1400] neurons, depending on the animal. These findings reveal intrinsic limits in the brain’s representations of space and suggest that single neurons downstream of the hippocampus can extract maximal spatial information from several hundred inputs.

Suggested Citation

  • Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31254-y
    DOI: 10.1038/s41467-022-31254-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31254-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31254-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. MohammadMehdi Kafashan & Anna W. Jaffe & Selmaan N. Chettih & Ramon Nogueira & Iñigo Arandia-Romero & Christopher D. Harvey & Rubén Moreno-Bote & Jan Drugowitsch, 2021. "Scaling of sensory information in large neural populations shows signatures of information-limiting correlations," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Johan Wessberg & Christopher R. Stambaugh & Jerald D. Kralik & Pamela D. Beck & Mark Laubach & John K. Chapin & Jung Kim & S. James Biggs & Mandayam A. Srinivasan & Miguel A. L. Nicolelis, 2000. "Real-time prediction of hand trajectory by ensembles of cortical neurons in primates," Nature, Nature, vol. 408(6810), pages 361-365, November.
    3. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    4. P. E. Jercog & Y. Ahmadian & C. Woodruff & R. Deb-Sen & L. F. Abbott & E. R. Kandel, 2019. "Heading direction with respect to a reference point modulates place-cell activity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego B. Piza & Benjamin W. Corrigan & Roberto A. Gulli & Sonia Carmo & A. Claudio Cuello & Lyle Muller & Julio Martinez-Trujillo, 2024. "Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    2. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    3. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    4. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    5. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    7. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    8. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Mamiko Arai & Vicky Brandt & Yuri Dabaghian, 2014. "The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    10. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    11. Alessandro Vato & Francois D Szymanski & Marianna Semprini & Ferdinando A Mussa-Ivaldi & Stefano Panzeri, 2014. "A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    12. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Hu Lu & Shengtao Yang & Longnian Lin & Baoming Li & Hui Wei, 2013. "Prediction of Rat Behavior Outcomes in Memory Tasks Using Functional Connections among Neurons," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-11, September.
    14. Zheng Li & Joseph E O'Doherty & Timothy L Hanson & Mikhail A Lebedev & Craig S Henriquez & Miguel A L Nicolelis, 2009. "Unscented Kalman Filter for Brain-Machine Interfaces," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-18, July.
    15. Pavlov, A.N. & Grishina, D.S. & Runnova, A.E. & Maksimenko, V.A. & Pavlova, O.N. & Shchukovsky, N.V. & Hramov, A.E. & Kurths, J., 2019. "Recognition of electroencephalographic patterns related to human movements or mental intentions with multiresolution analysis," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 230-235.
    16. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    17. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    18. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    19. Caleb Kemere & Margaret F Carr & Mattias P Karlsson & Loren M Frank, 2013. "Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    20. Xiang Zhang & Qichen Cao & Kai Gao & Cong Chen & Sihui Cheng & Ang Li & Yuqian Zhou & Ruojin Liu & Jun Hao & Emilio Kropff & Chenglin Miao, 2024. "Multiplexed representation of others in the hippocampal CA1 subfield of female mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31254-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.