IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55032-0.html
   My bibliography  Save this article

Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging

Author

Listed:
  • Chaorui Qiu

    (Xi’an Jiaotong University
    Chinese Academy of Sciences)

  • Zhiqiang Zhang

    (Chinese Academy of Sciences)

  • Zhiqiang Xu

    (Chinese Academy of Sciences)

  • Liao Qiao

    (Xi’an Jiaotong University)

  • Li Ning

    (Xi’an Jiaotong University
    Chinese Academy of Sciences)

  • Shujun Zhang

    (University of Wollongong)

  • Min Su

    (Chinese Academy of Sciences)

  • Weichang Wu

    (Chinese Academy of Sciences)

  • Kexin Song

    (Xi’an Jiaotong University)

  • Zhuo Xu

    (Xi’an Jiaotong University)

  • Long-Qing Chen

    (The Pennsylvania State University)

  • Hairong Zheng

    (Chinese Academy of Sciences)

  • Chengbo Liu

    (Chinese Academy of Sciences)

  • Weibao Qiu

    (Chinese Academy of Sciences)

  • Fei Li

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

Abstract

Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.

Suggested Citation

  • Chaorui Qiu & Zhiqiang Zhang & Zhiqiang Xu & Liao Qiao & Li Ning & Shujun Zhang & Min Su & Weichang Wu & Kexin Song & Zhuo Xu & Long-Qing Chen & Hairong Zheng & Chengbo Liu & Weibao Qiu & Fei Li, 2024. "Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55032-0
    DOI: 10.1038/s41467-024-55032-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55032-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55032-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Lin & Peng Hu & Xin Tong & Shuai Na & Rui Cao & Xiaoyun Yuan & David C. Garrett & Junhui Shi & Konstantin Maslov & Lihong V. Wang, 2021. "High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Li Lin & Peng Hu & Junhui Shi & Catherine M. Appleton & Konstantin Maslov & Lei Li & Ruiying Zhang & Lihong V. Wang, 2018. "Single-breath-hold photoacoustic computed tomography of the breast," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Chaorui Qiu & Bo Wang & Nan Zhang & Shujun Zhang & Jinfeng Liu & David Walker & Yu Wang & Hao Tian & Thomas R. Shrout & Zhuo Xu & Long-Qing Chen & Fei Li, 2020. "Transparent ferroelectric crystals with ultrahigh piezoelectricity," Nature, Nature, vol. 577(7790), pages 350-354, January.
    4. Hongjie Hu & Hao Huang & Mohan Li & Xiaoxiang Gao & Lu Yin & Ruixiang Qi & Ray S. Wu & Xiangjun Chen & Yuxiang Ma & Keren Shi & Chenghai Li & Timothy M. Maus & Brady Huang & Chengchangfeng Lu & Muyang, 2023. "A wearable cardiac ultrasound imager," Nature, Nature, vol. 613(7945), pages 667-675, January.
    5. Seonghee Cho & Minsu Kim & Joongho Ahn & Yeonggeun Kim & Junha Lim & Jeongwoo Park & Hyung Ham Kim & Won Jong Kim & Chulhong Kim, 2024. "An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Xiaoxiang Gao & Xiangjun Chen & Hongjie Hu & Xinyu Wang & Wentong Yue & Jing Mu & Zhiyuan Lou & Ruiqi Zhang & Keren Shi & Xue Chen & Muyang Lin & Baiyan Qi & Sai Zhou & Chengchangfeng Lu & Yue Gu & Xi, 2022. "A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangfeng Zhang & Zilong Li & Yichen Wang & A. Dominic Fortes & Theo Graves Saunders & Yang Hao & Isaac Abrahams & Haixue Yan & Lei Su, 2025. "Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Alp Timucin Toymus & Umut Can Yener & Emine Bardakci & Özgür Deniz Temel & Ersin Koseoglu & Dincay Akcoren & Burak Eminoglu & Mohsin Ali & Rasim Kilic & Tufan Tarcan & Levent Beker, 2024. "An integrated and flexible ultrasonic device for continuous bladder volume monitoring," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Liu, Jiaping & Qi, Yu & Ke, Juyang & Zhao, Yicong & Li, Xiaoqing & Yu, Yang & Sun, Xuyang & Guo, Rui, 2024. "Mechanically programmable substrate enable highly stretchable solar cell arrays for self-powered electronic skin," Applied Energy, Elsevier, vol. 367(C).
    6. Lisha Liu & Jiaojiao Yi & Kun Xu & Zhen Liu & Mingmeng Tang & Le Dai & Xuan Gao & Yang Liu & Shuhao Wang & Zhang Zhang & Liang Shu & Jing-Feng Li & Shujun Zhang & Yaojin Wang, 2024. "High piezoelectric property with exceptional stability in self-poled ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xun Zhao & Yihao Zhou & William Kwak & Aaron Li & Shaolei Wang & Marklin Dallenger & Songyue Chen & Yuqi Zhang & Allison Lium & Jun Chen, 2024. "A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Jian Li & Shengxin Jia & Dengfeng Li & Lung Chow & Qiang Zhang & Yiyuan Yang & Xiao Bai & Qingao Qu & Yuyu Gao & Zhiyuan Li & Zongze Li & Rui Shi & Binbin Zhang & Ya Huang & Xinyu Pan & Yue Hu & Zhan , 2024. "Wearable bio-adhesive metal detector array (BioMDA) for spinal implants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    12. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Chang-Chun Fan & Cheng-Dong Liu & Bei-Dou Liang & Wei Wang & Ming-Liang Jin & Chao-Yang Chai & Chang-Qing Jing & Tong-Yu Ju & Xiang-Bin Han & Wen Zhang, 2024. "Tuning ferroelectric phase transition temperature by enantiomer fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Junjie Chen & Longqi Chen & Yinglong Wu & Yichang Fang & Fang Zeng & Shuizhu Wu & Yanli Zhao, 2021. "A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Yuanjie Su & Weixiong Li & Xiaoxing Cheng & Yihao Zhou & Shuai Yang & Xu Zhang & Chunxu Chen & Tiannan Yang & Hong Pan & Guangzhong Xie & Guorui Chen & Xun Zhao & Xiao Xiao & Bei Li & Huiling Tai & Ya, 2022. "High-performance piezoelectric composites via β phase programming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Eunwoo Park & Sampa Misra & Dong Gyu Hwang & Chiho Yoon & Joongho Ahn & Donggyu Kim & Jinah Jang & Chulhong Kim, 2024. "Unsupervised inter-domain transformation for virtually stained high-resolution mid-infrared photoacoustic microscopy using explainable deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Chaojie Yu & Mingyue Shi & Shaoshuai He & Mengmeng Yao & Hong Sun & Zhiwei Yue & Yuwei Qiu & Baijun Liu & Lei Liang & Zhongming Zhao & Fanglian Yao & Hong Zhang & Junjie Li, 2023. "Chronological adhesive cardiac patch for synchronous mechanophysiological monitoring and electrocoupling therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Liao Qiao & Xiangyu Gao & Kaile Ren & Chaorui Qiu & Jinfeng Liu & Haonan Jin & Shuxiang Dong & Zhuo Xu & Fei Li, 2024. "Designing transparent piezoelectric metasurfaces for adaptive optics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55032-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.