IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27254-z.html
   My bibliography  Save this article

Observation of elastic spin with chiral meta-sources

Author

Listed:
  • Weitao Yuan

    (Tongji University
    Tongji University)

  • Chenwen Yang

    (Tongji University)

  • Danmei Zhang

    (Tongji University)

  • Yang Long

    (Tongji University)

  • Yongdong Pan

    (Tongji University)

  • Zheng Zhong

    (Tongji University)

  • Hong Chen

    (Tongji University)

  • Jinfeng Zhao

    (Tongji University)

  • Jie Ren

    (Tongji University)

Abstract

Directional routing of one-way classical wave has raised tremendous interests about spin-related phenomena. This sparks specifically the elastic wave study of pseudo-spin in meta-structures to perform robust manipulations. Unlike pseudo-spin in mathematics, the intrinsic spin angular momentum of elastic wave is predicted quite recently which exhibits selective excitation of unidirectional propagation even in conventional solids. However, due to the challenge of building up chiral elastic sources, the experimental observation of intrinsic spin of elastic wave is still missing. Here, we successfully measure the elastic spin in Rayleigh and Lamb modes by adopting elaborately designed chiral meta-sources that excite locally rotating displacement polarization. We observe the unidirectional routing of chiral elastic waves, characterize the different elastic spins along different directions, and demonstrate the spin-momentum locking in broad frequency ranges. We also find the selective one-way Lamb wave carries opposite elastic spin on two plate surfaces in additional to the source chirality.

Suggested Citation

  • Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27254-z
    DOI: 10.1038/s41467-021-27254-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27254-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27254-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. J. Satzinger & Y. P. Zhong & H.-S. Chang & G. A. Peairs & A. Bienfait & Ming-Han Chou & A. Y. Cleland & C. R. Conner & É. Dumur & J. Grebel & I. Gutierrez & B. H. November & R. G. Povey & S. J. Whi, 2018. "Quantum control of surface acoustic-wave phonons," Nature, Nature, vol. 563(7733), pages 661-665, November.
    2. Jinwoong Cha & Kun Woo Kim & Chiara Daraio, 2018. "Experimental realization of on-chip topological nanoelectromechanical metamaterials," Nature, Nature, vol. 564(7735), pages 229-233, December.
    3. Cheng He & Hua-Shan Lai & Bo He & Si-Yuan Yu & Xiangyuan Xu & Ming-Hui Lu & Yan-Feng Chen, 2020. "Acoustic analogues of three-dimensional topological insulators," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Yihao Yang & Zhen Gao & Haoran Xue & Li Zhang & Mengjia He & Zhaoju Yang & Ranjan Singh & Yidong Chong & Baile Zhang & Hongsheng Chen, 2019. "Realization of a three-dimensional photonic topological insulator," Nature, Nature, vol. 565(7741), pages 622-626, January.
    5. Riccardo Manenti & Anton F. Kockum & Andrew Patterson & Tanja Behrle & Joseph Rahamim & Giovanna Tancredi & Franco Nori & Peter J. Leek, 2017. "Circuit quantum acoustodynamics with surface acoustic waves," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    6. Zhenhua Tian & Chen Shen & Junfei Li & Eric Reit & Hunter Bachman & Joshua E. S. Socolar & Steven A. Cummer & Tony Jun Huang, 2020. "Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Yuan Li & Yong Sun & Weiwei Zhu & Zhiwei Guo & Jun Jiang & Toshikaze Kariyado & Hong Chen & Xiao Hu, 2018. "Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    8. Wen-Jie Chen & Zhao-Qing Zhang & Jian-Wen Dong & C. T. Chan, 2015. "Symmetry-protected transport in a pseudospin-polarized waveguide," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    9. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    10. Si-Yuan Yu & Cheng He & Zhen Wang & Fu-Kang Liu & Xiao-Chen Sun & Zheng Li & Hai-Zhou Lu & Ming-Hui Lu & Xiao-Ping Liu & Yan-Feng Chen, 2018. "Elastic pseudospin transport for integratable topological phononic circuits," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    11. S. Hossein Mousavi & Alexander B. Khanikaev & Zheng Wang, 2015. "Topologically protected elastic waves in phononic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    12. Konstantin Y. Bliokh & Aleksandr Y. Bekshaev & Franco Nori, 2014. "Extraordinary momentum and spin in evanescent waves," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeseung Lee & Minwoo “Joshua” Kweun & Woorim Lee & Hong Min Seung & Yoon Young Kim, 2024. "Perfect circular polarization of elastic waves in solid media," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hengjiang Ren & Tirth Shah & Hannes Pfeifer & Christian Brendel & Vittorio Peano & Florian Marquardt & Oskar Painter, 2022. "Topological phonon transport in an optomechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Qianlong Kang & Fujia Chen & Hongyong Mao & Keya Zhou & Kai Guo & Shutian Liu & Zhongyi Guo, 2023. "Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-7, March.
    5. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Germain Tobar & Sreenath K. Manikandan & Thomas Beitel & Igor Pikovski, 2024. "Detecting single gravitons with quantum sensing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    16. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Felix Kronowetter & Marcus Maeder & Yan Kei Chiang & Lujun Huang & Johannes D. Schmid & Sebastian Oberst & David A. Powell & Steffen Marburg, 2023. "Realistic prediction and engineering of high-Q modes to implement stable Fano resonances in acoustic devices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Andrew H. Salij & Randall H. Goldsmith & Roel Tempelaar, 2024. "Theory predicts 2D chiral polaritons based on achiral Fabry–Pérot cavities using apparent circular dichroism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Dmitrii Gromyko & Shu An & Sergey Gorelik & Jiahui Xu & Li Jun Lim & Henry Yit Loong Lee & Febiana Tjiptoharsono & Zhi-Kuang Tan & Cheng-Wei Qiu & Zhaogang Dong & Lin Wu, 2024. "Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27254-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.