IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v604y2022i7906d10.1038_s41586-022-04500-y.html
   My bibliography  Save this article

Quantum state preparation and tomography of entangled mechanical resonators

Author

Listed:
  • E. Alex Wollack

    (Stanford University
    Stanford University)

  • Agnetta Y. Cleland

    (Stanford University
    Stanford University)

  • Rachel G. Gruenke

    (Stanford University
    Stanford University)

  • Zhaoyou Wang

    (Stanford University
    Stanford University)

  • Patricio Arrangoiz-Arriola

    (Stanford University
    Stanford University
    AWS Center for Quantum Computing)

  • Amir H. Safavi-Naeini

    (Stanford University
    Stanford University)

Abstract

Precisely engineered mechanical oscillators keep time, filter signals and sense motion, making them an indispensable part of the technological landscape of today. These unique capabilities motivate bringing mechanical devices into the quantum domain by interfacing them with engineered quantum circuits. Proposals to combine microwave-frequency mechanical resonators with superconducting devices suggest the possibility of powerful quantum acoustic processors1–3. Meanwhile, experiments in several mechanical systems have demonstrated quantum state control and readout4,5, phonon number resolution6,7 and phonon-mediated qubit–qubit interactions8,9. At present, these acoustic platforms lack processors capable of controlling the quantum states of several mechanical oscillators with a single qubit and the rapid quantum non-demolition measurements of mechanical states needed for error correction. Here we use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators. Our device is capable of fast qubit–mechanics swap operations, which we use to deterministically manipulate the mechanical states. By placing the qubit into the strong dispersive regime with both mechanical resonators simultaneously, we determine the phonon number distributions of the resonators by means of Ramsey measurements. Finally, we present quantum tomography of the prepared nonclassical and entangled mechanical states. Our result represents a concrete step towards feedback-based operation of a quantum acoustic processor.

Suggested Citation

  • E. Alex Wollack & Agnetta Y. Cleland & Rachel G. Gruenke & Zhaoyou Wang & Patricio Arrangoiz-Arriola & Amir H. Safavi-Naeini, 2022. "Quantum state preparation and tomography of entangled mechanical resonators," Nature, Nature, vol. 604(7906), pages 463-467, April.
  • Handle: RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04500-y
    DOI: 10.1038/s41586-022-04500-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04500-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04500-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Kronowetter & Marcus Maeder & Yan Kei Chiang & Lujun Huang & Johannes D. Schmid & Sebastian Oberst & David A. Powell & Steffen Marburg, 2023. "Realistic prediction and engineering of high-Q modes to implement stable Fano resonances in acoustic devices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04500-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.